Assessing the illegal hunting of native wildlife in China


Abstract

Illegal harvesting and trading of wildlife have become major threats to global biodiversity and public health1,2,3. Although China is widely recognized as an important destination for wildlife illegally obtained abroad4, little attention has been given to illegal hunting within its borders. Here we extracted 9,256 convictions for illegal hunting from a nationwide database of trial verdicts in China spanning January 2014 to March 2020. These convictions involved illegal hunting of 21% (n = 673) of China’s amphibian, reptile, bird and mammal species, including 25% of imperilled species in these groups. Sample-based extrapolation indicates that many more species were taken illegally during this period. Larger body mass and range size (for all groups), and proximity to urban markets (for amphibians and birds) increase the probability of a species appearing in the convictions database. Convictions pertained overwhelmingly to illegal hunting for commercial purposes and involved all major habitats across China. A small number of convictions represented most of the animals taken, indicating the existence of large commercial poaching operations. Prefectures closer to urban markets show higher densities of convictions and more individual animals taken. Our results suggest that illegal hunting is a major, overlooked threat to biodiversity throughout China.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Learn more

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illegal hunting of species in four vertebrate groups in China as represented in court verdicts from January 2014 to March 2020.
Fig. 2: The proportion of imperilled and non-imperilled species illegally hunted in China, as represented in court verdicts from January 2014 to March 2020.
Fig. 3: Sample-size-based estimates, using court verdicts, of the number of species that were illegally hunted in China.
Fig. 4: Geographic patterns and socioeconomic drivers of illegal hunting convictions in 336 Chinese prefectures.

Data availability

The court verdicts are available in OpenLaw (http://openlaw.cn/). The number of verdicts (all verdicts, type 1 and type 2 verdicts), the number of individual animals hunted, and ecological and socioeconomic variables at prefecture level and species traits for four vertebrate groups were uploaded to Figshare, https://doi.org/10.6084/m9.figshare.22114913. Source data are provided with this paper.

Code availability

R code for analysing the relationships between illegal hunting intensity (number of court verdicts and number of individuals hunted) and ecological and socioeconomic factors in 336 Chinese prefectures and predicting the probability that a species is known to be illegally hunted using species traits were uploaded to Figshare, https://doi.org/10.6084/m9.figshare.22114913.

References

  1. Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  2. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  3. Swift, L., Hunter, P. R., Lees, A. C. & Bell, D. J. Wildlife trade and the emergence of infectious diseases. EcoHealth 4, 25 (2007).

    Article 
    PubMed Central 

    Google Scholar 

  4. World Wildlife Crime Report: Trafficking in Protected Species (United Nations Office on Drugs and Crime, 2020).

  5. Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. & Maisels, F. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Phil. Trans. R. Soc. B 368, 20120303 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  6. Scheffers, B. R., Oliveira, B. F., Lamb, I. & Edwards, D. P. Global wildlife trade across the tree of life. Science 366, 71–76 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  7. Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife- threats to biodiversity and human health. Science 287, 443–449 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  8. Morton, O., Scheffers, B. R., Haugaasen, T. & Edwards, D. P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. 5, 540–548 (2021).

    Article 
    PubMed 

    Google Scholar 

  9. Minin, E. D. et al. Identifying global centers of unsustainable commercial harvesting of species. Sci. Adv. 5, eaau2879 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  10. Cheng, W., Xing, S. & Bonebrake, T. C. Recent pangolin seizures in China reveal priority areas for intervention. Conserv. Lett. 10, 757–764 (2017).

    Article 

    Google Scholar 

  11. Zhou, Z. & Jiang, Z. International trade status and crisis for snake species in China. Conserv. Biol. 18, 1386–1394 (2004).

    Article 

    Google Scholar 

  12. Morcatty, T. Q. et al. Illegal trade in wild cats and its link to Chinese-led development in Central and South America. Conserv. Biol. 34, 1525–1535 (2020).

    Article 
    PubMed 

    Google Scholar 

  13. Wittemyer, G. et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  14. Fan, P.-F., Fei, H.-L. & Luo, A.-D. Ecological extinction of the critically endangered northern white-cheeked gibbon Nomascus leucogenys in China. Oryx 48, 52–55 (2014).

    Article 

    Google Scholar 

  15. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  16. Hinsley, A. et al. Building sustainability into the Belt and Road Initiative’s Traditional Chinese Medicine trade. Nat. Sustain 3, 96–100 (2020).

    Article 

    Google Scholar 

  17. Mittermeier, R. A., Robles Gil, P. & Mittermeier, C. G. Megadiversity: Earth’s Biologically Wealthiest Nations (CEMEX, 1997).

  18. Fan, P.-F., Yang, L., Liu, Y. & Lee, T. M. Build up conservation research capacity in China for biodiversity governance. Nat. Ecol. Evol. 4, 1162–1167 (2020).

    Article 
    PubMed 

    Google Scholar 

  19. Li, Y. & Wilcove, D. S. Threats to vertebrate species in China and the United States. BioScience 55, 147–153 (2005).

    Article 

    Google Scholar 

  20. Liang, W., Cai, Y. & Yang, C.-C. Extreme levels of hunting of birds in a remote village of Hainan Island, China. Bird Conserv. Int. 23, 45–52 (2013).

    Article 

    Google Scholar 

  21. Sreekar, R. et al. The use of species–area relationships to partition the effects of hunting and deforestation on bird extirpations in a fragmented landscape. Divers. Distrib. 21, 441–450 (2015).

    Article 

    Google Scholar 

  22. Gong, S., Wang, J., Shi, H., Song, R. & Xu, R. Illegal trade and conservation requirements of freshwater turtles in Nanmao, Hainan province, China. Oryx 40, 331–336 (2006).

    Article 

    Google Scholar 

  23. Kamp, J. et al. Global population collapse in a superabundant migratory bird and illegal trapping in China. Conserv. Biol. 29, 1684–1694 (2015).

    Article 
    PubMed 

    Google Scholar 

  24. The Supreme People’s Court of China The Interpretation of Several Issues on the Specific Application of Law in the Trial of Criminal Cases of Destruction of Wildlife Resources (National Laws and Regulations Database, 2000); https://flk.npc.gov.cn/detail.html?NDAyODgxZTQ1ZmZmZjk1MDAxNjAwMDFhY2IyNTAwNmM.

  25. Gao, H. et al. Using expert knowledge to identify key threats and conservation strategies for wildlife: A case study with bats in China. Glob. Ecol. Conserv. 41, e02364 (2023).

    Google Scholar 

  26. Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article 
    PubMed 

    Google Scholar 

  27. Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Chan, H.-K., Shoemaker, K. T. & Karraker, N. E. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure. Biol. Conserv. 170, 3–9 (2014).

    Article 

    Google Scholar 

  29. Chang, C. H. et al. The pleasure of pursuit: recreational hunters in rural Southwest China exhibit low exit rates in response to declining catch. Ecol. Soc. 22, 43 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  30. Ni, Q. et al. Spatial heterogeneity and socioeconomic transformation challenge the prevention of illegal wildlife consumption in China. Biol. Conserv. 275, 109751 (2022).

    Article 

    Google Scholar 

  31. Shao, M.-L., Newman, C., Buesching, C. D., Macdonald, D. W. & Zhou, Z.-M. Understanding wildlife crime in China: Socio-demographic profiling and motivation of offenders. PLoS ONE 16, e0246081 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  32. Heim, W. et al. East Asian buntings: ongoing illegal trade and encouraging conservation responses. Conserv. Sci. Pract. 3, e405 (2021).

    Article 

    Google Scholar 

  33. Gao, J. et al. China’s ecological conservation redline: a solution for future nature conservation. Ambio 49, 1519–1529 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Shivaprakash, K. N., Sen, S., Paul, S., Kiesecker, J. M. & Bawa, K. S. Mammals, wildlife trade, and the next global pandemic. Curr. Biol. 31, 3671–3677.e3 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  35. Shi, B. et al. Identifying key bird species and geographical hotspots of avian influenza A (H7N9) virus in China. Infect. Dis. Poverty 7, 97 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  36. Yang, N., Liu, P., Li, W. & Zhang, L. Permanently ban wildlife consumption. Science 367, 1434–1434 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  37. Xiao, L., Lu, Z., Li, X., Zhao, X. & Li, B. V. Why do we need a wildlife consumption ban in China? Curr. Biol. 31, R168–R172 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  38. Koh, L. P., Li, Y. & Lee, J. S. H. The value of China’s ban on wildlife trade and consumption. Nat. Sust. 4, 2–4 (2021).

    Article 

    Google Scholar 

  39. Jiao, Y. & Lee, T. M. China’s conservation strategy must reconcile its contemporary wildlife use and trade practices. Front. Ecol. Evol. 9, 340 (2021).

    Article 
    ADS 

    Google Scholar 

  40. Huang, G. et al. Wildlife conservation and management in China: achievements, challenges and perspectives. Natl Sci. Rev. 8, nwab042 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  41. Yu, Y., Wetzler, A., Yang, X., Tang, R. & Zhang, L. Significant and timely ivory trade restrictions in both China and the United States are critical to save elephants. Conserv. Lett. 10, 596–601 (2017).

    Article 

    Google Scholar 

  42. Jiang, X., Cui, S., Liang, B., Shuai, H. & Liu, J. Tigers vs. flies: impact of official ranks on judicial trials in PRC’s anti-corruption campaign. Crime Law Soc. Change 80, 51–78 (2023).

    Article 

    Google Scholar 

  43. Ru, H. & Zou, K. How do individual politicians affect privatization? Evidence from China. Rev. Finance 26, 637–672 (2022).

    Article 

    Google Scholar 

  44. Wang, K. et al. The updated checklists of amphibians and reptiles of China. Biodiversity Sci. 28, 189–218 (2020).

    Article 

    Google Scholar 

  45. Zheng, G. A Checklist on the Classification and Distribution of the Birds of China (Science Press, 2017).

  46. Jiang, Z. et al. China’s mammalian diversity. Biodivers. Sci. 23, 351–364 (2015).

    Article 

    Google Scholar 

  47. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  48. Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  49. Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    Article 
    PubMed 

    Google Scholar 

  50. Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).

    Article 

    Google Scholar 

  51. Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20, 81 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  52. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  53. Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  55. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  56. Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M. & Raia, P. Fast production of large, time-calibrated, informal supertrees with tree.merger. Palaeontology 65, e12588 (2022).

    Article 

    Google Scholar 

  57. Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).

    Article 
    PubMed 

    Google Scholar 

  58. Orme, D. caper: Comparative Analysis of Phylogenetics and Evolution in R. R package version 0.5.2 1-36 https://cran.r-project.org/web/packages/caper/ (2013).

  59. Liang, D., Giam, X., Hu, S., Ma, L. & Wilcove, D. S. Data and code for: Assessing the illegal hunting of native wildlife within China. Figshare https://doi.org/10.6084/m9.figshare.22114913 (2023).

  60. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  61. Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  62. Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  63. Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2015: Globe. Zenodo https://doi.org/10.5281/zenodo.3939038 (2019).

  64. Xu, X. Multi-Year Boundary Data of Administrative Divisions of Prefectures and Cities in China (Registration and Publication System of Resources and Environmental Science Data, 2023); https://doi.org/10.12078/2023010102.

  65. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  66. Zhang, Y. et al. Ecological network analysis of embodied energy exchanges among the seven regions of China. J. Ind. Ecol. 20, 472–483 (2016).

    Article 

    Google Scholar 

  67. Ji, Z. Physical Geography of China (Higher Education Press, 1998).

  68. Zhang, H. & Lahr, M. L. China’s energy consumption change from 1987 to 2007: a multi-regional structural decomposition analysis. Energy Policy 67, 682–693 (2014).

    Article 

    Google Scholar 

  69. Hu, S., Cheng, Y., Pan, R., Zou, F. & Lee, T. M. Understanding the social impacts of enforcement activities on illegal wildlife trade in China. Ambio 51, 1643–1657 (2022).

    Article 
    PubMed 

    Google Scholar 

  70. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); http://www.R-project.org/.

  71. Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.47 https://cran.r-project.org/web/packages/MuMIn/ (2020).

  72. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.3.3 https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (2020).

  73. Bivand, R. R packages for analyzing spatial data: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).

    Article 

    Google Scholar 

  74. Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.1-5 https://cran.r-project.org/web/packages/raster/index.html (2020).

  75. Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  76. Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

    Article 
    PubMed 

    Google Scholar 

  77. Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Article 

    Google Scholar 

  78. Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

    Article 

    Google Scholar 

  79. Ho, L. s. T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    Article 
    PubMed 

    Google Scholar 

Download references

Acknowledgements

The authors thank the Chinese law enforcement officers, law workers and conservationists who combat illegal hunting in China and generated these court verdicts. We thank R. Senior, F. Guo, Y. Zeng and Y. Chen for their help with analyses, and Y. Liu, T. Mu, B. Lin, C. L. Crawford, B. Lee, Y. He and F. Hua for their comments on earlier versions of this manuscript. The work of D. Liang and D. Wilcove on this project was funded by grants from the High Meadows Foundation and the Ma Huateng Foundation to Princeton University.

Author information

Authors and Affiliations

Authors

Contributions

D.L., X.G. and D.S.W. conceived the idea. D.L. and S.H. performed data collection and extraction. D.L., X.G. and L.M. analysed the data. D.L. drafted the paper with inputs from D.S.W. and X.G. All authors revised and approved the final draft of the manuscript.

Corresponding author

Correspondence to
Dan Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks David Edwards, Yanmei Lin, Ana Benitez Lopez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The number of individual animals illegally taken in court verdicts.

a: frequency distribution of the number of individual animals illegal hunted. Each bar on the x-axis represents 1% of 8,059 court verdicts with information on the number of individual animals taken, ordered by the number of individual animals that were illegally hunted. The total number of individual animals reported as taken in court verdicts is 3,158,622. Note that a small number of court verdicts (5%) account for disproportionately large numbers of animals (90%) hunted illegally. b: the numbers of individual animals illegally hunted in the court verdicts (8,059 court verdicts for four vertebrate groups combined; 1,559 verdicts for amphibians, 339 verdicts for reptiles, 4,001 court verdicts for birds, and 2,161 verdicts for mammals) in different geographical regions. For visualization purposes, the number of individuals (y-axis) is log-transformed. The middle line represents median values; lower and upper box hinges represent 25th and 75th percentiles, respectively; lower and upper whiskers represent minimum (25th percentiles – 1.5 * interquartile range) and maximum (75th percentiles + 1.5 * interquartile range), respectively. Dots are outliers, which represent court cases involving vast numbers of illegally hunted animals. Note that small numbers of court verdicts with large numbers of illegally hunted animals are widely distributed across different regions.

Extended Data Fig. 2 Motivation for illegal hunting and use of hunted animals in court verdicts.

a: percentage of court verdicts of different motivations for hunting and uses of animals. We obtained data on the motivation for hunting and use of illegally obtained animals in 3,721 and 5,748, respectively, of 8,645 court verdicts that contained taxonomic information. b: the numbers of animals hunted in court verdicts for commercial versus non-commercial purposes. We obtained data from 3,434 court verdicts with information about motivation and the number of animals hunted. For visualization purposes, the number of individual animals hunted (y-axis) is log-transformed. The middle line represents median values; lower and upper box hinges represent 25th and 75th percentiles, respectively; lower and upper whiskers represent minimum (25th percentiles – 1.5 * Interquartile Range) and maximum (75th percentiles + 1.5 * Interquartile Range), respectively. Dots are outliers, which represent court cases involving especially large numbers of illegally hunted animals. Note that many more animals were taken for commercial purposes than for non-commercial purposes.

Extended Data Fig. 3 Illegal hunting of animals in different habitat types.

a: percentage of court verdicts detected in different habitats. Information on the habitats where illegal hunting occurred was present in 8,454 (91%) court verdicts. The y-axis shows the percentage of court verdicts involving hunting in a particular habitat type. Habitat types were categorized following the habitat type categories used by IUCN. b: the numbers of animals hunted in court verdicts in different habitats, reported in court verdicts. We obtained data from 7,897 court verdicts with information about habitats and the number of animals hunted. For visualization purposes, the number of individuals (y-axis) is log-transformed. The middle line represents median values; lower and upper box hinges represent 25th and 75th percentiles, respectively; lower and upper whiskers represent minimum (25th percentiles – 1.5 * Interquartile Range) and maximum (75th percentiles + 1.5 * Interquartile Range), respectively. Dots are outliers, which represent court cases involving vast numbers of illegally hunted animals. Note that large numbers of animals were illegally hunted in all major habitats including anthropogenic landscapes.

Extended Data Fig. 4 Geographic patterns and socioeconomic drivers for the number of animals illegally hunted in 336 Chinese prefectures.

Figures in the left column show the mean coefficient estimates with 95% confidence interval (CI) bars for ecological, geographic, and socioeconomic variables in the global model for all four vertebrate groups combined (a) and for each vertebrate group individually (c: amphibians; e: reptiles; g: birds; i: mammals) (For models, see Supplementary Table 10). Negative and positive values of coefficients indicate negative and positive relationships with the number of court verdicts per km2, respectively. Coefficients with 95% CI that do not overlap with zero indicate variables that are significantly correlated with the number of court verdicts per km2. Maps in the right column show relative hunting intensity (number of type 1 verdicts per km2; scaled to 0-1 by the maximum values and the color scale is on a log scale) for all four vertebrates combined (b) and for each vertebrate group individually (d: amphibians; f: reptiles; h: birds; j: mammals).

Extended Data Fig. 5 Geographic patterns and socioeconomic drivers for the number of the type 1 (crime of illegal hunting wildlife in general) verdicts in 336 Chinese prefectures.

Panels in the left column show the mean coefficient estimates with 95% confidence interval (CI) bars for ecological, geographic, and socioeconomic variables in the global model for all four vertebrate groups combined (a) and for each vertebrate group individually (c: amphibians; e: reptiles; g: birds; i: mammals). (For models, see Supplementary Table 8). Negative and positive coefficient values indicate negative and positive relationships with the number of court verdicts per km2, respectively. Coefficients with 95% CI that do not overlap with zero indicate variables that are statistically significantly correlated with the number of court verdicts per km2. Maps in the right column show relative hunting intensity (number of type 1 verdicts per km2; scaled to 0-1 by the maximum values and the color scale is on a log scale) for all vertebrates combined (b) and for each vertebrate group individually (d: amphibians; f: reptiles; h: birds; j: mammals).

Extended Data Fig. 6 Geographic patterns and socioeconomic drivers for the number of the type 2 (crime of illegal hunting, killing imperiled wildlife) verdicts in 336 Chinese prefectures.

Figures in the left column show the mean coefficient estimates with 95% confidence interval (CI) bars for ecological, geographic, and socioeconomic variables in the global model for all four vertebrate groups combined (a) and for each vertebrate group individually (c: amphibians; e: reptiles; g: birds; i: mammals) (For models, see Supplementary Table 9). Negative and positive values of coefficients indicate negative and positive relationships with the number of court verdicts per km2, respectively. Coefficients with 95% CI that do not overlap with zero indicate variables that are significantly correlated with the number of court verdicts per km2. Maps in the right column show relative hunting intensity (number of type 1 verdicts per km2; scaled to 0-1 by the maximum values and the color scale is on a log scale) for all group vertebrates combined (b) and for each vertebrate group individually (d: amphibians; f: reptiles; h: birds; j: mammals).

Extended Data Fig. 7 Partial response curves of the global models showing the relationships between socioeconomic variables and number of all verdicts in each prefecture for each taxonomic group.

From top to bottom, rows represent all vertebrate groups combined, followed by amphibians, reptiles, birds and mammals. Error bands represented 95% confidence intervals. Significant associations are marked with a red “*” (see Supplementary Table 6 for the definitions of all socioeconomic variables and Supplementary Table 7 for coefficients of each variable in the global models for each taxonomic group). Note that ‘latitude’ was removed due to its high association with species richness (in the cases of vertebrates, amphibians, and reptiles) (Supplementary Table 19).

Extended Data Fig. 8 Partial response curves of the global models showing the relationships between socioeconomic variables and number of all individuals being hunted in each prefecture for each taxonomic group.

From top to bottom, rows represent all vertebrate groups combined, followed by amphibians, reptiles, birds and mammals. Error bands represented 95% confidence intervals. Significant associations are marked with a red “*” (see Supplementary Table 6 for the definitions of all socioeconomic variables and Supplementary Table 10 for coefficients of each variable in the global models for each taxonomic group). Note that ‘latitude’ was removed due to its high association with species richness (in the cases of vertebrates, amphibians, and reptiles) (Supplementary Table 19).

Extended Data Fig. 9 Partial response curves of the global models showing the relationships between socioeconomic variables and number of the type 1 (the crime of illegal hunting) and type 2 verdicts (the crime of illegal hunting and killing imperiled wildlife) in each prefecture for each taxonomic group.

a: type 1 verdicts; b: type 2 verdicts. Error bands represented 95% confidence intervals. Significant associations are marked with a red “*” (see Supplementary Table 6 for the definitions of all socioeconomic variables and Supplementary Tables 8-9 for coefficients of each variable in the global models for each taxonomic group). Note that ‘latitude’ was removed due to its high association with species richness (in the cases of China-listed reptiles) (Supplementary Table 19).

Extended Data Fig. 10 The predicted geographic patterns of the number of court verdicts and the number of animals illegally hunted per km2 in 336 Chinese prefectures.

Figures in columns a-c show the predicted number of court verdicts (scaled to 0-1 by the maximum values) per 1000 km2 based on the top models for all verdicts (a), type 1 verdicts (b), and type 2 verdicts (c), scaled to 0-1 by the maximum values (for models, see Supplementary Tables 7−9). Maps in column d show the predicted number of animals hunted per 1,000 km2, scaled to 0-1 by the maximum values and color scale is on log (for top models, see Supplementary Table 10). From top to bottom, rows show the four vertebrate groups combined, amphibians, reptiles, birds, and mammals.

Extended Data Fig. 11 The differences between the observed and predicted number of court verdicts (all verdicts, the type 1 verdicts, and the type 2 verdicts) and total animals illegally hunted per 1000 km2 in 336 Chinese prefectures.

Figures in columns a-c show the differences between the observed and predicted number of court verdicts per 1,000 km2 for all verdicts (a), type 1 verdicts (b), and type 2 verdicts (c). Maps in column d show the differences between the observed and predicted number of individual animals hunted per 1000 km2. From top to bottom, rows show the four vertebrate groups combined; amphibians; reptiles; birds; and mammals. Blue colors indicate prefectures where the observed number of verdicts (or individuals) is greater than the predicted number of verdicts (or individuals), while red colors indicate prefectures where the observed number of verdicts (or individuals) is smaller than the predicted number of verdicts (or individuals).

Extended Data Fig. 12 Prefectures shown in orange (n = 25) are where D.L. observed shorebird hunting while conducting fieldwork along the China coasts.

See Methods and Supplementary Information for details.

Supplementary information

Supplementary Information

This file contains Supplementary Information, Supplementary Figs. 1–3, Supplementary Tables 1–21 and related references.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 1

Source Data Fig. 2

Source Data Fig. 3

Source Data Fig. 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Giam, X., Hu, S. et al. Assessing the illegal hunting of native wildlife in China.
Nature (2023). https://doi.org/10.1038/s41586-023-06625-0

Download citation

  • Received: 30 January 2021

  • Accepted: 08 September 2023

  • Published: 25 October 2023

  • DOI: https://doi.org/10.1038/s41586-023-06625-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Leave a Reply

Your email address will not be published. Required fields are marked *