A perspective on brain-age estimation and its clinical promise


Abstract

Brain-age estimation has gained increased attention in the neuroscientific community owing to its potential use as a biomarker of brain health. The difference between estimated and chronological age based on neuroimaging data enables a unique perspective on brain development and aging, with multiple open questions still remaining in the brain-age research field. This Perspective presents an overview of current advancements in the field and envisions the future evolution of the brain-age framework before its potential deployment in hospital settings.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%;padding:30px 5px;display:flex;flex-direction:column;justify-content:space-between}.BuyBoxSection-683559780 p{margin:0}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 ul{margin:0}.BuyBoxSection-683559780 .link-usp{display:list-item;margin:0;margin-left:20px;padding-top:6px;list-style-position:inside}.BuyBoxSection-683559780 .link-usp span{font-size:14px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2737859108:hover{text-decoration:none}.BuyBoxSection-683559780 .btn-secondary{background:#fff}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1636778223{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2737859108{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:20px}.Button-505204839 .btn-secondary-label,.Button-1078489254 .btn-secondary-label,.Button-2737859108 .btn-secondary-label{color:#069}
/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The brain-age estimation framework.
Fig. 2: Advancements and challenges in the brain-age field.

Similar content being viewed by others

Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort

Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium

Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality

References

  1. Diebel, L. W. M. & Rockwood, K. Determination of biological age: geriatric assessment vs biological biomarkers. Curr. Oncol. Rep. 23, 104 (2021).

    Article 

    Google Scholar 

  2. Ferrucci, L. et al. Measuring biological aging in humans: a quest. Aging Cell 19, e13080 (2020).

    Article 

    Google Scholar 

  3. Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020).

    Article 

    Google Scholar 

  4. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article 

    Google Scholar 

  5. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article 

    Google Scholar 

  6. Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).

    Article 

    Google Scholar 

  7. Cole, J. H., Marioni, R. E., Harris, S. E. & Deary, I. J. Brain age and other bodily ‘ages’: implications for neuropsychiatry. Mol. Psychiatry 24, 266–281 (2019).

    Article 

    Google Scholar 

  8. Anderton, B. H. Ageing of the brain. Mech. Ageing Dev. 123, 811–817 (2002).

    Article 

    Google Scholar 

  9. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article 

    Google Scholar 

  10. Cole, J. H. & Franke, K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40, 681–690 (2017).

    Article 

    Google Scholar 

  11. Baecker, L. et al. Machine learning for brain age prediction: introduction to methods and clinical applications. EBioMedicine 72, 103600 (2021a).

    Article 

    Google Scholar 

  12. Franke, K. & Gaser, C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front. Neurol. 10, 789 (2019).

    Article 

    Google Scholar 

  13. Mishra, S., Beheshti, I. & Khanna, P. A review of neuroimaging-driven brain age estimation for identification of brain disorders and health conditions. IEEE Rev. Biomed. Eng. 16, 371–385 (2023).

    Article 

    Google Scholar 

  14. Sone, D. & Beheshti, I. Neuroimaging-based brain age estimation: a promising personalized biomarker in neuropsychiatry. J. Pers. Med. 12, 1850 (2022).

    Article 

    Google Scholar 

  15. Wrigglesworth, J. et al. Factors associated with brain ageing—a systematic review. BMC Neurol. 21, 312 (2021).

    Article 

    Google Scholar 

  16. Madan, C. R. Scan once, analyse many: using large open-access neuroimaging datasets to understand the brain. Neuroinform 20, 109–137 (2022).

    Article 

    Google Scholar 

  17. Jones, D. T., Lee, J. & Topol, E. J. Digitising brain age. Lancet 400, 988 (2022).

    Article 

    Google Scholar 

  18. Franke, K., Ziegler, G., Klöppel, S. & Gaser, C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage 50, 883–892 (2010).

    Article 

    Google Scholar 

  19. Cole, J. H. et al. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann. Neurol. 77, 571–581 (2015).

    Article 

    Google Scholar 

  20. Bashyam, V. M. et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain 143, 2312–2324 (2020); erratum 144, e12 (2021).

  21. Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E. & Miller, K. L. Estimation of brain age delta from brain imaging. NeuroImage 200, 528–539 (2019).

    Article 

    Google Scholar 

  22. de Lange, A.-M. G. et al. Population-based neuroimaging reveals traces of childbirth in the maternal brain. Proc. Natl Acad. Sci. USA 116, 22341–22346 (2019).

    Article 

    Google Scholar 

  23. Beheshti, I., Mishra, S., Sone, D., Khanna, P. & Matsuda, H. T1-weighted MRI-driven brain age estimation in Alzheimer’s disease and Parkinson’s disease. Aging Dis. 11, 618–628 (2020).

    Article 

    Google Scholar 

  24. Abrol, A. et al. Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning. Nat. Commun. 12, 353 (2021).

    Article 

    Google Scholar 

  25. Cole, J. H. et al. Brain age predicts mortality. Mol. Psychiatry 23, 1385–1392 (2018).

    Article 

    Google Scholar 

  26. Franke, K. & Gaser, C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych 25, 235–245 (2012).

    Article 

    Google Scholar 

  27. Valizadeh, S. A., Hänggi, J., Mérillat, S. & Jäncke, L. Age prediction on the basis of brain anatomical measures. Hum. Brain Mapp. 38, 997–1008 (2017).

    Article 

    Google Scholar 

  28. Wang, J. et al. Age estimation using cortical surface pattern combining thickness with curvatures. Med. Biol. Eng. Comput. 52, 331–341 (2014).

    Article 

    Google Scholar 

  29. Dosenbach, N. U. et al. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010); erratum 330, 756 (2010).

  30. Lund, M. J. et al. Brain age prediction using fMRI network coupling in youths and associations with psychiatric symptoms. NeuroImage Clin. 33, 102921 (2022).

    Article 

    Google Scholar 

  31. Tønnesen, S. et al. Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: a multisample diffusion tensor imaging study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 1095–1103 (2020).

    Google Scholar 

  32. Lee, J. et al. Deep learning-based brain age prediction in normal aging and dementia. Nat. Aging 2, 412–424 (2022).

    Article 

    Google Scholar 

  33. Al Zoubi, O. et al. Predicting age from brain EEG signals—a machine learning approach. Front. Aging Neurosci. 10, 184 (2018).

    Article 

    Google Scholar 

  34. Xifra-Porxas, A., Ghosh, A., Mitsis, G. D. & Boudrias, M.-H. Estimating brain age from structural MRI and MEG data: insights from dimensionality reduction techniques. NeuroImage 231, 117822 (2021).

    Article 

    Google Scholar 

  35. Cole, J. H. Multimodality neuroimaging brain-age in UK Biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol. Aging 92, 34–42 (2020).

    Article 

    Google Scholar 

  36. de Lange, A. G. et al. Multimodal brain-age prediction and cardiovascular risk: the Whitehall II MRI sub-study. NeuroImage 222, 117292 (2020).

    Article 

    Google Scholar 

  37. Liem, F. et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 148, 179–188 (2017).

    Article 

    Google Scholar 

  38. Ray, B. et al. Multimodal brain age prediction with feature selection and comparison. In 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) https://doi.org/10.1109/EMBC46164.2021.9631007 (IEEE, 2021).

  39. Hu, D. et al. Disentangled-multimodal adversarial autoencoder: application to infant age prediction with incomplete multimodal neuroimages. IEEE Trans. Med. Imaging 39, 4137–4149 (2020).

    Article 

    Google Scholar 

  40. Baecker, L. et al. Brain age prediction: a comparison between machine learning models using region- and voxel-based morphometric data. Hum. Brain Mapp. 42, 2332–2346 (2021b).

    Article 

    Google Scholar 

  41. Beheshti, I. et al. Predicting brain age using machine learning algorithms: a comprehensive evaluation. IEEE J. Biomed. Health Inf. 26, 1432–1440 (2022).

    Article 

    Google Scholar 

  42. Lee, W. H. et al. Brain age prediction in schizophrenia: does the choice of machine learning algorithm matter? Psychiatry Res. Neuroimaging 310, 111270 (2021).

    Article 

    Google Scholar 

  43. Lee, W. H. The choice of machine learning algorithms impacts the association between brain-predicted age difference and cognitive function. Mathematics 11, 1229 (2023).

    Article 

    Google Scholar 

  44. Cole, J. H. et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163, 115–124 (2017).

    Article 

    Google Scholar 

  45. Jonsson, B. A. et al. Brain age prediction using deep learning uncovers associated sequence variants. Nat. Commun. 10, 5409 (2019).

    Article 

    Google Scholar 

  46. Peng, H., Gong, W., Beckmann, C. F., Vedaldi, A. & Smith, S. M. Accurate brain age prediction with lightweight deep neural networks. Med. Image Anal. 68, 101871 (2021).

    Article 

    Google Scholar 

  47. Hahn, T. et al. An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling. Sci. Adv. 8, eabg9471 (2022).

    Article 

    Google Scholar 

  48. Leonardsen, E. H. et al. Deep neural networks learn general and clinically relevant representations of the ageing brain. NeuroImage 256, 119210 (2022).

    Article 

    Google Scholar 

  49. Wood, D. A. et al. Accurate brain‐age models for routine clinical MRI examinations. NeuroImage 249, 118871 (2022).

    Article 

    Google Scholar 

  50. Brown, T. B. et al. Language models are few-shot learners. In 34th Conference on Neural Information Processing Systems (NeurIPS, 2020).

  51. Esser, P., Rombach, R., Blattman, A. & Ommer, B. ImageBART: bidirectional context with multinomial diffusion for autoregressive image synthesis. In 35th Conference on Neural Information Processing Systems (NeurIPS, 2021).

  52. He, S., Grant, P. E. & Ou, Y. Global–local transformer for brain age estimation. IEEE Trans. Med. Imaging 41, 213–224 (2022).

    Article 

    Google Scholar 

  53. Cai, H., Gao, Y. & Liu, M. Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation. IEEE Trans. Med. Imaging 42, 456–466 (2023).

    Article 

    Google Scholar 

  54. Pinaya, W. H. L. et al. Brain imaging generation with latent diffusion models. Preprint at https://arxiv.org/abs/2209.07162 (2022).

  55. Tanveer, M. et al. Deep learning for brain age estimation: a systematic review. Inf. Fusion 96, 130–143 (2023).

    Article 

    Google Scholar 

  56. Kaufmann, T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 22, 1617–1623 (2019).

    Article 

    Google Scholar 

  57. Popescu, S. G., Glocker, B., Sharp, D. J. & Cole, J. H. Local brain-age: a U-Net model. Front. Aging Neurosci. 13, 761954 (2021).

    Article 

    Google Scholar 

  58. Le, T. T. et al. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE. Front. Aging Neurosci. 10, 317 (2018).

    Article 

    Google Scholar 

  59. Liang, H., Zhang, F. & Niu, X. Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders. Hum. Brain Mapp. 40, 3143–3152 (2019).

    Article 

    Google Scholar 

  60. de Lange, A.-M. G. & Cole, J. H. Correction procedures in brain-age prediction. Neuroimage Clin. 26, 102229 (2020).

    Article 

    Google Scholar 

  61. de Lange, A.-M. G. et al. Mind the gap: performance metric evaluation in brain-age prediction. Hum. Brain Mapp. 43, 3113–3129 (2022).

    Article 

    Google Scholar 

  62. More, S. et al. Brain-age prediction: a systematic comparison of machine learning workflows. NeuroImage 270, 119947 (2023).

    Article 

    Google Scholar 

  63. Dular, L. & Špiclin, Ž. BASE: brain age standardized evaluation. NeuroImage 285, 120469 (2024).

    Article 

    Google Scholar 

  64. Dufumier, B. et al. OpenBHB: a large-scale multi-site brain MRI data-set for age prediction and debiasing. NeuroImage 263, 119637 (2022).

    Article 

    Google Scholar 

  65. Dörfel, R. P. et al. Prediction of brain age using structural magnetic resonance imaging: a comparison of accuracy and test–retest reliability of publicly available software packages. Hum. Brain Mapp. 44, 6139–6148 (2023).

    Article 

    Google Scholar 

  66. Jirsaraie, R. J. et al. A systematic review of multimodal brain age studies: uncovering a divergence between model accuracy and utility. Patterns 4, 100712 (2023).

    Article 

    Google Scholar 

  67. Jirsaraie, R. J. et al. Benchmarking the generalizability of brain age models: challenges posed by scanner variance and prediction bias. Hum. Brain Mapp. 44, 1118–1128 (2023).

    Article 

    Google Scholar 

  68. Vidal-Pineiro, D. et al. Individual variations in ‘brain age’ relate to early-life factors more than to longitudinal brain change. eLife 10, e69995 (2021).

    Article 

    Google Scholar 

  69. Antonopoulos, G. et al. A systematic comparison of VBM pipelines and their application to age prediction. NeuroImage 279, 120292 (2023).

    Article 

    Google Scholar 

  70. Korbmacher, M. et al. Considerations on brain age predictions from repeatedly sampled data across time. Brain Behav. 13, e3219 (2023).

    Article 

    Google Scholar 

  71. Bashyam, V. M. et al. Deep generative medical image harmonization for improving cross‐site generalization in deep learning predictors. J. Magn. Reson. Imaging 55, 908–916 (2022).

    Article 

    Google Scholar 

  72. Pomponio, R. et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage 208, 116450 (2020).

    Article 

    Google Scholar 

  73. Dular, L. & Špiclin, Ž. in Predictive Intelligence in Medicine. PRIME 2021 Lecture Notes in Computer Science Vol. 12928 (eds Rekik, I. et al.) 243–254 (Springer, 2021); https://doi.org/10.1007/978-3-030-87602-9_23

  74. Elliott, M. L. et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol. Psychiatry 26, 3829–3838 (2021).

    Article 

    Google Scholar 

  75. Gautherot, M. et al. Longitudinal analysis of brain-predicted age in amnestic and non-amnestic sporadic early-onset Alzheimer’s disease. Front. Aging Neurosci. 13, 729635 (2021).

    Article 

    Google Scholar 

  76. Gaser, C. et al. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE 8, e67346 (2013).

    Article 

    Google Scholar 

  77. Lombardi, A. et al. Explainable deep learning for personalized age prediction with brain morphology. Front. Neurosci. 15, 674055 (2021).

    Article 

    Google Scholar 

  78. Yin, C. et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment. Proc. Natl Acad. Sci. USA 120, e2214634120 (2023).

    Article 

    Google Scholar 

  79. Hesse, L. S., Dinsdale, N. K. & Namburete, A. I. L. Prototype learning for explainable brain age prediction. Preprint at https://arxiv.org/abs/2306.09858 (2023).

  80. Palma, M., Tavakoli, S., Brettschneider, J. & Nichols, T. E. Quantifying uncertainty in brain-predicted age using scalar-on-image quantile regression. NeuroImage 219, 116938 (2020).

    Article 

    Google Scholar 

  81. Wei, R. et al. Brain age gap in neuromyelitis optica spectrum disorders and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 94, 31–37 (2023).

    Article 

    Google Scholar 

  82. Dafflon, J. et al. An automated machine learning approach to predict brain age from cortical anatomical measures. Hum. Brain Mapp. 41, 3555–3566 (2020).

    Article 

    Google Scholar 

  83. Butler, E. R. et al. Pitfalls in brain age analyses. Hum. Brain Mapp. 42, 4092–4101 (2021).

    Article 

    Google Scholar 

  84. Wagen, A. Z. et al. Life course, genetic, and neuropathological associations with brain age in the 1946 British Birth Cohort: a population-based study. Lancet Healthy Longev. 3, e607–e616 (2022).

    Article 

    Google Scholar 

  85. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article 

    Google Scholar 

  86. Marquand, A. F., Rezek, I., Buitelaar, J. & Beckmann, C. F. Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biol. Psychiatry 80, 552–561 (2016).

    Article 

    Google Scholar 

  87. Marquand, A. F. et al. Conceptualizing mental disorders as deviations from normative functioning. Mol. Psychiatry 24, 1415–1424 (2019).

    Article 

    Google Scholar 

  88. Valdes-Hernandez, P. A. et al. Toward MR protocol-agnostic, unbiased brain age predicted from clinical-grade MRIs. Sci. Rep. 13, 19570 (2023).

    Article 

    Google Scholar 

  89. Billot, B. et al. SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 86, 102789 (2023).

    Article 

    Google Scholar 

  90. Pérez-García, F., Sparks, R. & Ourselin, S. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Prog. Biomed. 208, 106236 (2021).

    Article 

    Google Scholar 

  91. Iglesias et al. Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. NeuroImage 237, 118206 (2021).

    Article 

    Google Scholar 

  92. Lin, H. et al. Low-field magnetic resonance image enhancement via stochastic image quality transfer. Med. Image Anal. 87, 102807 (2023).

    Article 

    Google Scholar 

  93. Kimberly, W. T. et al. Brain imaging with portable low-field MRI. Nat. Rev. Bioeng. 1, 617–630 (2023).

    Article 

    Google Scholar 

  94. Silva, S., Altmann, A., Gutman, B. & Lorenzi, M. in Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science Vol. 12444 (eds Albarqouni, S. et al.) 201–210 (Springer, 2020); https://doi.org/10.1007/978-3-030-60548-3_20

  95. Cheshmi, S. S., Mahyar, A., Soroush, A., Rezvani, Z. & Farahani, B. Brain age estimation using structural MRI: a clustered federated learning approach. In 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS) 1–6 (IEEE, 2023).

  96. Li, T., Sahu, A. K., Talwalkar, A. & Smith, V. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag. 37, 50–60 (2020).

    Google Scholar 

  97. Han, L. K. M. et al. Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. Mol. Psychiatry 26, 5124–5139 (2021).

    Article 

    Google Scholar 

  98. Han, L. K. M. et al. A large-scale ENIGMA multisite replication study of brain age in depression. Neuroimage Rep. 2, 100149 (2022).

    Article 

    Google Scholar 

  99. Constantinides, C. et al. Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA schizophrenia consortium. Mol. Psychiatry 28, 1201–1209 (2023).

    Article 

    Google Scholar 

  100. Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

    Article 

    Google Scholar 

  101. Largent, E. A., Stites, S. D., Harkins, K. & Karlawish, J. ‘That would be dreadful’: the ethical, legal, and social challenges of sharing your Alzheimer’s disease biomarker and genetic testing results with others. J. Law Biosci. 8, lsab004 (2021).

    Article 

    Google Scholar 

  102. Snowdon, D. A. Healthy aging and dementia: findings from the Nun study. Ann. Intern. Med. 139, 450–454 (2003).

    Article 

    Google Scholar 

  103. Cabeza, R. et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19, 701–710 (2018).

    Article 

    Google Scholar 

  104. Stern, Y., Barnes, C. A., Grady, C., Jones, R. N. & Raz, N. Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging 83, 124–129 (2019).

    Article 

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge R. Dahnke for providing insightful comments on the paper and helping with the visualization. C.G. and P.K. were supported by Carl Zeiss Stiftung as a part of the IMPULS project (IMPULS P2019-01-006), the Federal Ministry of Science and Education (BMBF) under the frame of ERA PerMed (Pattern-Cog ERAPERMED2021-127) and the Marie Skłodowska-Curie Innovative Training Network (SmartAge 859890 H2020-MSCA-ITN2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the content, reviewed and edited the entire paper.

Corresponding author

Correspondence to
Christian Gaser.

Ethics declarations

Competing interests

J.H.C. is an advisor to and shareholder in BrainKey and ClaritasHealthPTE.

Peer review

Peer review information

Nature Computational Science thanks Iman Beheshti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ananya Rastogi, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaser, C., Kalc, P. & Cole, J.H. A perspective on brain-age estimation and its clinical promise.
Nat Comput Sci (2024). https://doi.org/10.1038/s43588-024-00659-8

Download citation

  • Received: 11 August 2023

  • Accepted: 12 June 2024

  • Published: 24 July 2024

  • DOI: https://doi.org/10.1038/s43588-024-00659-8


Leave a Reply

Your email address will not be published. Required fields are marked *