Multicellular artificial neural network-type architectures demonstrate computational problem solving


Abstract

Here, we report a modular multicellular system created by mixing and matching discrete engineered bacterial cells. This system can be designed to solve multiple computational decision problems. The modular system is based on a set of engineered bacteria that are modeled as an ‘artificial neurosynapse’ that, in a coculture, formed a single-layer artificial neural network-type architecture that can perform computational tasks. As a demonstration, we constructed devices that function as a full subtractor and a full adder. The system is also capable of solving problems such as determining if a number between 0 and 9 is a prime number and if a letter between A and L is a vowel. Finally, we built a system that determines the maximum number of pieces of a pie that can be made for a given number of straight cuts. This work may have importance in biocomputer technology development and multicellular synthetic biology.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%;padding:30px 5px;display:flex;flex-direction:column;justify-content:space-between}.BuyBoxSection-683559780 p{margin:0}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 ul{margin:0}.BuyBoxSection-683559780 .link-usp{display:list-item;margin:0;margin-left:20px;padding-top:6px;list-style-position:inside}.BuyBoxSection-683559780 .link-usp span{font-size:14px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2737859108:hover{text-decoration:none}.BuyBoxSection-683559780 .btn-secondary{background:#fff}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1636778223{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2737859108{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:20px}.Button-505204839 .btn-secondary-label,.Button-1078489254 .btn-secondary-label,.Button-2737859108 .btn-secondary-label{color:#069}
/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mathematical and genetic network design.
Fig. 2: Optimization of bactoneuron parameters.
Fig. 3: Simulations and experimental validation of optimized bactoneurons.
Fig. 4: Fluorescence microscopy for full subtractor and full adder.
Fig. 5: Bacterial ANNs answer yes/no computational problems.
Fig. 6: Bacterial ANNs answer multiple mathematical problems together and determine the maximum number of pieces obtained from a pie for a given number of straight cuts.

Similar content being viewed by others

Synthetic neuromorphic computing in living cells

Synthetic neural-like computing in microbial consortia for pattern recognition

Pathways to cellular supremacy in biocomputing

Data availability

All relevant data supporting the findings are available within the paper, Extended Data figures and the Supplementary Data. Source data are provided with this paper.

References

  1. Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455–468 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  2. Reif, J. H., Hauser, M., Pirrung, M. & LaBean, T. in Complex Systems Science in Biomedicine (eds. Deisboeck, T. S. & Kresh, J. Y.) 701–735 (Springer, 2006).

  3. Ma, Q. et al. DNA computing: principle, construction, and applications in intelligent diagnostic. Small Struct. 2, 2100051 (2021).

    Article 
    CAS 

    Google Scholar 

  4. Yoon, J., Lim, J., Shin, M., Lee, T. & Choi, J. W. Toward bioelectronic device based on bionanohybrid composed of nanomaterials and biomaterials: from nucleic acid and protein to living cell. Appl. Phys. Rev. 10, 011302 (2023).

    Article 
    CAS 

    Google Scholar 

  5. Fan, D., Wang, J., Wang, E. & Dong, S. Propelling DNA computing with materials’ power: recent advancements in innovative DNA logic computing systems and smart bio‐applications. Adv. Sci. 7, 2001766 (2020).

    Article 
    CAS 

    Google Scholar 

  6. Lin, K. N., Volkel, K., Tuck, J. M. & Keung, A. J. Dynamic and scalable DNA-based information storage. Nat. Commun. 11, 2981 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  7. Lederman, H., Macdonald, J., Stefanovic, D. & Stojanovic, M. N. Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45, 1194–1199 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  8. Fratto, B. E., Lewer, J. M. & Katz, E. An enzyme based half-adder and half-subtractor with a modular design. ChemPhysChem 17, 2210–2217 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  9. Cherry, K. M. & Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559, 370–376 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  10. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  11. Faulhammer, D., Cukras, A. R., Lipton, R. J. & Landweber, L. F. Molecular computation: RNA solutions to chess problems. Proc. Natl Acad. Sci. USA 97, 1385–1389 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  12. Chao, J. et al. Solving mazes with single-molecule DNA navigators. Nat. Mater. 18, 273–279 (2018).

    Article 
    PubMed 

    Google Scholar 

  13. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  14. Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  15. Bonnerjee, D., Mukhopadhyay, S. & Bagh, S. Design, fabrication, and device chemistry of a 3-input-3-output synthetic genetic combinatorial logic circuit with a 3-input AND gate in a single bacterial cell. Bioconjug. Chem. 30, 3013–3020 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  16. Can, U. I., Nagarajan, N., Vural, D. C. & Zorlutuna, P. Muscle-cell-based ‘living diodes’. Adv. Biosyst. 1, 1600035 (2017).

    Article 

    Google Scholar 

  17. Wong, A., Wang, H., Poh, C. L. & Kitney, R. I. Layering genetic circuits to build a single cell, bacterial half adder. BMC Biol. 13, 40 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  18. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  19. Sexton, J. T. & Tabor, J. J. Multiplexing cell–cell communication. Mol. Syst. Biol. 16, e9618 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  20. Ausländer, D. et al. Programmable full-adder computations in communicating three-dimensional cell cultures. Nat. Methods 15, 57–60 (2018).

    Article 
    PubMed 

    Google Scholar 

  21. Weinberg, B. et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Müller, M. et al. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat. Chem. Biol. 13, 309–316 (2017).

    Article 
    PubMed 

    Google Scholar 

  23. Kim, M., Julius, A. A. & Cheang U. K. Microbiorobotics: Biologically Inspired Microscale Robotic Systems 2nd edn (Elsevier, 2017)

  24. Justus, K. B. et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019).

    Article 
    PubMed 

    Google Scholar 

  25. Grozinger, L. et al. Pathways to cellular supremacy in biocomputing. Nat. Commun. 10, 5250 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  26. Chen, Y. Y. & Smolke, C. D. From DNA to targeted therapeutics: bringing synthetic biology to the clinic. Sci. Transl. Med. 3, 106ps42 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Yan, X., Liu, X., Zhao, C. & Chen, G. Q. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct. Target. Ther. 8, 199 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Johnson, M. B., March, A. R. & Morsut, L. Engineering multicellular systems: using synthetic biology to control tissue self-organization. Curr. Opin. Biomed. Eng. 4, 163–173 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  29. Teravest, M. A., Li, Z. & Angenent, L. T. Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act. Energy Environ. Sci. 4, 4907–4916 (2011).

    Article 

    Google Scholar 

  30. Dvořák, P., Nikel, P. I., Damborský, J. & de Lorenzo, V. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 35, 845–866 (2017).

    Article 
    PubMed 

    Google Scholar 

  31. Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  32. Sarkar, K., Chakraborty, S., Bonnerjee, D. & Bagh, S. Distributed computing with engineered bacteria and its application in solving chemically generated 2 × 2 maze problems. ACS Synth. Biol. 10, 2456–2464 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  33. Collins, J. Synthetic biology: bits and pieces come to life. Nature 483, S8–S10 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  34. Ren, X. et al. Cardiac muscle cell-based coupled oscillator network for collective computing. Adv. Intell. Syst. 3, 2000253 (2021).

    Article 

    Google Scholar 

  35. Ji, J. et al. Large-scale cardiac muscle cell-based coupled oscillator network for vertex coloring problem. Adv. Intell. Syst. 5, 2200356 (2023).

    Article 

    Google Scholar 

  36. Sarkar, K., Bonnerjee, D., Srivastava, R. & Bagh, S. A single layer artificial neural network type architecture with molecular engineered bacteria for reversible and irreversible computing. Chem. Sci. 12, 15821–15832 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  37. Srivastava, R. & Bagh, S. A logically reversible double Feynman gate with molecular engineered bacteria arranged in an artificial neural network-type architecture. ACS Synth. Biol. 12, 51–60 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  38. Rizik, L., Danial, L., Habib, M., Weiss, R. & Daniel, R. Synthetic neuromorphic computing in living cells. Nat. Commun. 13, 5602 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  39. Millacura, F. A., Largey, B. & French, C. E. ParAlleL: a novel population-based approach to biological logic gates. Front. Bioeng. Biotechnol. 7, 46 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  40. Demuth, H. & De Jesús, B. Neural Network Design 2nd edn (Martin Hagan, 2014).

  41. Sarkar, K., Mukhopadhyay, S., Bonnerjee, D., Srivastava, R. & Bagh, S. A frame-shifted gene, which rescued its function by non-natural start codons and its application in constructing synthetic gene circuits. J. Biol. Eng. 13, 20 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  42. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I 1-I 2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  43. Goldreich, O. Computational Complexity: A Conceptual Perspective (Cambridge Univ. Press, 2008).

  44. Mezard, M. & Montanari, A. Information, Physics and Computation (Oxford Graduate Texts, Oxford Univ. Press, 2009).

  45. Baldwin, C. Y. & Clark, K. B. in Complex Engineered Systems (eds. Braha, D. et al.) 175–205 (Springer, 2006).

  46. Glykofrydis, F. & Elfick, A. Exploring standards for multicellular mammalian synthetic biology. Trends Biotechnol. 40, 1299–1312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  47. Boo, A., Amaro, R. L. & Stan, G. B. Quorum sensing in synthetic biology: a review. Curr. Opin. Syst. Biol. 28, 100378 (2021).

    Article 
    CAS 

    Google Scholar 

  48. Ohlendorf, R., Vidavski, R. R., Eldar, A., Moffat, K. & Möglich, A. From dusk till dawn: one-plasmid systems for light-regulated gene expression. J. Mol. Biol. 416, 534–542 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  49. Multamäki, E. et al. Optogenetic control of bacterial expression by red light. ACS Synth. Biol. 11, 3354–3367 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  50. Macia, J., Vidiella, B. & Solé, R. V. Synthetic associative learning in engineered multicellular consortia. J. R. Soc. Interface 14, 20170158 (2017).

  51. Moškon, M., Pušnik, Ž., Zimic, N. & Mraz, M. Field-programmable biological circuits and configurable (bio)logic blocks for distributed biological computing. Comput. Biol. Med. 128, 104109 (2021).

    Article 
    PubMed 

    Google Scholar 

  52. Beal, J. et al. The long journey towards standards for engineering biosystems. EMBO Rep. 21, e50521 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  53. Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell–cell signaling. Science 361, 156–162 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. Aydin, O. et al. Principles for the design of multicellular engineered living systems. APL Bioeng. 6, 010903 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  55. Mukhopadhyay, S., Sarkar, K., Srivastava, R., Pal, A. & Bagh, S. Processing two environmental chemical signals with a synthetic genetic IMPLY gate, a 2-input-2-output integrated logic circuit, and a process pipeline to optimize its systems chemistry in Escherichia coli. Biotechnol. Bioeng. 117, 1502–1512 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  56. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by grant RSI4002, Department of Atomic Energy, Government of India, awarded to Saha Institute of Nuclear Physics, and S.B. is a part of it.

Author information

Authors and Affiliations

Authors

Contributions

D.B., S.C., B.M., R.B. and A.P. performed all the experiments. D.B., S.C., B.M., R.B. and S.B. analyzed the data. D.B., S.C. and S.B. designed the experiments and wrote the manuscript. S.B. designed and conceived the study.

Corresponding author

Correspondence to
Sangram Bagh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Allen Liu, Pinar Zorlutuna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Genetic circuit designs.

Generic maps of the synthetic genetic networks that encode corresponding specific functions to each bactoneuron type.

Extended Data Fig. 2 Details of characterization and Dose Responses experiments of Bactoneurons that went through no iteration and were selected as final.

The bactoneurons AS1, AS2, AS3, AS4, AS8 and AS9 were separately subjected to all possible combinations of input conditions (saturated concentration ‘1’ or absent ‘0’) yielding corresponding parameter values of Fold Change (F.C.), Σ Leakage (ΣL) and Signal variation (S.V.) (shown in figure). ‘Signal variation’ (S.V.) is a comparative parameter drawn by scaling the fluorescence signal (@ ‘ON’ state) of all bactoneurons in an iteration set (with the same output channel) by considering the strongest signal of all bactoneurons as ‘1’. For Dose response, the concentration of one parameter was varied across various concentration points while the other two inducers were kept constant at ‘0’ for repressor or saturated concentration for activator (specified atop each dose response curve). The fluorescence readings obtained from the dose response experiments were fitted with the Log-Sigmoid function (see Methods) to derive the parameters Bias (BAS#) and Weights (Winducer) and the respective Inducer Saturation points (Sat.) were identified. Each data point represent mean and s.d. from four independent colonies.

Source data

Extended Data Fig. 3 Details of characterization and Dose Responses experiments across iterations of Bactoneuron 5.

AS5A, AS5B, AS5C, AS5D, AS5E, AS5F and AS5G; yielding corresponding parameter values (shown in figure) of Fold Change (F.C.), Σ Leakage (ΣL), Signal variation (S.V.), Bias (BAS#), Weights (Winducer) and Inducer Saturation points (Sat.). The fluorescence readings obtained from the dose response experiments were fitted with the Log-Sigmoid function (see Methods) to derive the Weight and Bias parameters. The induction states of the two constant inducers are specified atop the fitted curves. The final selected Construct is shown boxed. Each data point represent mean and s.d. from four independent colonies.

Source data

Extended Data Fig. 4 Details of characterization and Dose Responses experiments across iterations of Bactoneuron 6.

AS6A, AS6B, AS6C, AS6D, AS6E and AS6F; yielding corresponding parameter values (shown in figure) of Fold Change (F.C.), Σ Leakage (ΣL), Signal variation (S.V.), Bias (BAS#), Weights (WInducer) and Inducer Saturation points (Sat.). The fluorescence readings obtained from the dose response experiments were fitted with the Log-Sigmoid function (see Methods) to derive the Weight and Bias parameters. The induction states of the two constant inducers are specified atop the fitted curves. The final selected Construct is shown boxed. Each data point represent mean and s.d. from four independent colonies.

Source data

Extended Data Fig. 5 Details of characterization and Dose Responses experiments across iterations of Bactoneuron 7.

AS7A, AS7B, AS7C and AS7D; yielding corresponding parameter values (shown in figure) of Fold Change (F.C.), Σ Leakage (ΣL), Signal variation (S.V.), Bias (BAS#), Weights (WInducer) and Inducer Saturation points (Sat.). The fluorescence readings obtained from the dose response experiments were fitted with the Log-Sigmoid function (see Methods) to derive the Weight and Bias parameters. The induction states of the two constant inducers are specified atop the fitted curves. The final selected Construct is shown boxed. Each data point represent mean and s.d. from four independent colonies.

Source data

Extended Data Fig. 6 Detailed genetic circuit designs and plasmid maps of Bactoneurons that went through no iteration and were selected as final.

(a) BNeu AS1, (b) BNeu AS2, (c) BNeu AS3, (d) BNeu AS4, (e) BNeu AS8, (f) BNeu AS9. Names of plasmids constructed and incorporated in the circuits are also shown within the plasmid schematic. MCS represents empty network brick cloning site. ‘F’ and ‘B’ denotes forward and reverse direction of cassette respectively. The E2-crimson output of AS1 is altered with EGFP to give AS1* and EGFP output of AS2 is altered with E2-Crimson to give AS2*.

Extended Data Fig. 7 Detailed genetic circuit designs and plasmid maps of Bactoneuron 5 across iterations.

(a) BNeu AS5A, (b) BNeu AS5B, (c) BNeu AS5C, (d) BNeu AS5D, (e) BNeu AS5E, (f) BNeu AS5F and (g) BNeu AS5G. Names of plasmids constructed and incorporated in the circuits are also shown within the plasmid schematic. MCS represents empty network brick cloning site. ‘F’ and ‘B’ denotes forward and reverse direction of cassette respectively.

Extended Data Fig. 8 Detailed genetic circuit designs and plasmid maps of Bactoneuron 6 and Bactoneuron 7 across iterations.

(a) BNeu AS6A, (b) BNeu AS6B, (c) BNeu AS6C, (d) BNeu AS6D, (e) BNeu AS6E, (f) BNeu AS6F, (g) BNeu AS7A, (h) BNeu AS7B, (i) BNeu AS7C and (j) BNeu AS7D. Names of plasmids constructed and incorporated in the circuits are also shown within the plasmid schematic. MCS represents empty network brick cloning site. ‘F’ and ‘B’ denotes forward and reverse direction of cassette respectively.

Extended Data Fig. 9 Detailed genetic circuit designs and plasmid maps of Bactoneurons.

(a) BNeu AS10, (b) BNeu AS11 and AS11*, (c) BNeu AS12, (d) BNeu AS13, (e) BNeu AS14 and AS14*. Names of plasmids constructed and incorporated in the circuits are also shown within the plasmid schematic. MCS represents empty network brick cloning site. ‘F’ and ‘B’ denotes forward and reverse direction of cassette respectively. The EGFP output of AS11 is altered with mTagBFP2 to give AS11* and EGFP output of AS14 is altered with mKO2 to give AS14*.

Extended Data Fig. 10 Experimental Characterizations of Bactoneurons.

Fold change characterization, Dose Responses experiments with fitting values, simulation, and re-validation of Bactoneurons AS10, AS11, AS12, AS13, and AS14. Each data point represent mean and s.d. from four independent colonies.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–5.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data for threshold parameters obtained from Extended Data Figs. 2–5.

Source Data Fig. 3

Statistical source data for simulation and validation of bactoneurons.

Source Data Extended Data Fig. 2

Statistical source data for characterization and dose–response of bactoneurons.

Source Data Extended Data Fig. 3

Statistical source data for characterization and dose–response of bactoneurons.

Source Data Extended Data Fig. 4

Statistical source data for characterization and dose–response of bactoneurons.

Source Data Extended Data Fig. 5

Statistical source data for characterization and dose–response of bactoneurons.

Source Data Extended Data Fig. 10

Statistical source data for characterization, dose–response, simulation and experimental validation of bactoneurons.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnerjee, D., Chakraborty, S., Mukherjee, B. et al. Multicellular artificial neural network-type architectures demonstrate computational problem solving.
Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01711-4

Download citation

  • Received: 23 June 2023

  • Accepted: 26 July 2024

  • Published: 16 September 2024

  • DOI: https://doi.org/10.1038/s41589-024-01711-4


Leave a Reply

Your email address will not be published. Required fields are marked *