Abstract
The ability to manipulate and observe phenomena on attosecond timescales has yielded groundbreaking insights into electron dynamics and the behaviour of matter exposed to intense light fields. The interdisciplinary field of attosecond science connects various research areas, including quantum optics, quantum chemistry and quantum information science. However, the intrinsic quantum effects in attosecond science have been largely ignored. In this Perspective, we discuss the latest theoretical and experimental advances in exploring and understanding quantum phenomena within attosecond science. We focus on distinguishing genuinely quantum observations from classical phenomena in the context of high-harmonic generation and above-threshold ionization. Additionally, we illuminate the often overlooked yet important role of entanglement in attosecond processes, elucidating its influence on experimental outcomes.
This is a preview of subscription content, access via your institution
Access options
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%;padding:30px 5px;display:flex;flex-direction:column;justify-content:space-between}.BuyBoxSection-683559780 p{margin:0}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 ul{margin:0}.BuyBoxSection-683559780 .link-usp{display:list-item;margin:0;margin-left:20px;padding-top:6px;list-style-position:inside}.BuyBoxSection-683559780 .link-usp span{font-size:14px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2737859108:hover{text-decoration:none}.BuyBoxSection-683559780 .btn-secondary{background:#fff}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1636778223{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2737859108{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:20px}.Button-505204839 .btn-secondary-label,.Button-1078489254 .btn-secondary-label,.Button-2737859108 .btn-secondary-label{color:#069}
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
-
Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127 (1979).
Google Scholar
-
Becker, W. et al. Above-threshold ionization: from classical features to quantum effects. Adv. At. Mol. Opt. Phys. 48, 35–98 (2002).
Google Scholar
-
Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 21, L31 (1988).
Google Scholar
-
l’Huillier, A., Lompre, L., Mainfray, G. & Manus, C. Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 μm. Phys. Rev. A 27, 2503 (1983).
Google Scholar
-
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
Google Scholar
-
Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
Google Scholar
-
Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).
Google Scholar
-
Calegari, F., Sansone, G., Stagira, S., Vozzi, C. & Nisoli, M. Advances in attosecond science. J. Phys. B At. Mol. Opt. Phys. 49, 062001 (2016).
Google Scholar
-
Armstrong, G. S. et al. Dialogue on analytical and ab initio methods in attoscience. Eur. Phys. J. D At. Mol. Opt. Phys. 75, 209 (2021).
Google Scholar
-
Lewenstein, M., Balcou, P., Ivanov, M. Y., L’huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117 (1994).
Google Scholar
-
Amini, K. et al. Symphony on strong field approximation. Rep. Prog. Phys. 82, 116001 (2019).
Google Scholar
-
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
Google Scholar
-
Vrakking, M. J. J. Ion-photoelectron entanglement in photoionization with chirped laser pulses. J. Phys. B At. Mol. Opt. Phys. 55, 134001 (2022).
Google Scholar
-
Koll, L.-M., Maikowski, L., Drescher, L., Witting, T. & Vrakking, M. J. Experimental control of quantum-mechanical entanglement in an attosecond pump-probe experiment. Phys. Rev. Lett. 128, 043201 (2022).
Google Scholar
-
Nishi, T., Lötstedt, E. & Yamanouchi, K. Entanglement and coherence in photoionization of H2 by an ultrashort XUV laser pulse. Phys. Rev. A 100, 013421 (2019).
Google Scholar
-
Busto, D. et al. Probing electronic decoherence with high-resolution attosecond photoelectron interferometry. Eur. Phys. J. D At. Mol. Opt. Phys. 76, 112 (2022).
Google Scholar
-
Ruberti, M., Averbukh, V. & Mintert, F. Bell test of quantum entanglement in attosecond photoionization. Preprint at https://doi.org/10.48550/arXiv.2312.05036 (2023).
-
Nabekawa, Y. & Midorikawa, K. Analysis of attosecond entanglement and coherence using feasible formulae. Phys. Rev. Res. 5, 033083 (2023).
Google Scholar
-
Christov, I. P. Phase-locking mechanism in non-sequential double ionization. Appl. Phys. B 125, 209 (2019).
Google Scholar
-
Maxwell, A. S., Madsen, L. B. & Lewenstein, M. Entanglement of orbital angular momentum in non-sequential double ionization. Nat. Commun. 13, 4706 (2022).
Google Scholar
-
Younis, D., Xie, S. & Eberly, J. H. Quantum entanglement during single-cycle nonsequential ionization. Preprint at https://doi.org/10.48550/arXiv.2403.09854 (2024).
-
McKemmish, L. K., McKenzie, R. H., Hush, N. S. & Reimers, J. R. Quantum entanglement between electronic and vibrational degrees of freedom in molecules. J. Chem. Phys. 135, 244110 (2011).
Google Scholar
-
Vatasescu, M. Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system. Phys. Rev. A 88, 063415 (2013).
Google Scholar
-
Vatasescu, M. Measures of electronic-vibrational entanglement and quantum coherence in a molecular system. Phys. Rev. A 92, 042323 (2015).
Google Scholar
-
Izmaylov, A. F. & Franco, I. Entanglement in the Born–Oppenheimer approximation. J. Chem. Theory Comput. 13, 20–28 (2016).
Google Scholar
-
Sanz-Vicario, J. L., Pérez-Torres, J. F. & Moreno-Polo, G. Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Phys. Rev. A 96, 022503 (2017).
Google Scholar
-
Blavier, M., Levine, R. D. & Remacle, F. Time evolution of entanglement of electrons and nuclei and partial traces in ultrafast photochemistry. Phys. Chem. Chem. Phys. 24, 17516–17525 (2022).
Google Scholar
-
Sundaram, B. & Milonni, P. W. High-order harmonic generation: simplified model and relevance of single-atom theories to experiment. Phys. Rev. A 41, 6571 (1990).
Google Scholar
-
Xu, H. Non-perturbative theory of harmonic generation under a high-intensity laser field. Z. Phys. D At. Mol. Clust. 28, 27–36 (1993).
Google Scholar
-
Compagno, G., Dietz, K. & Persico, F. QED theory of harmonic emission by a strongly driven atom. J. Phys. B At. Mol. Opt. Phys. 27, 4779 (1994).
Google Scholar
-
Becker, W., Lohr, A., Kleber, M. & Lewenstein, M. A unified theory of high-harmonic generation: application to polarization properties of the harmonics. Phys. Rev. A 56, 645 (1997).
Google Scholar
-
Gao, J., Shen, F. & Eden, J. Interpretation of high-order harmonic generation in terms of transitions between quantum Volkov states. Phys. Rev. A 61, 043812 (2000).
Google Scholar
-
Diestler, D. Harmonic generation: quantum-electrodynamical theory of the harmonic photon-number spectrum. Phys. Rev. A 78, 033814 (2008).
Google Scholar
-
Bogatskaya, A., Volkova, E., Kharin, V. Y. & Popov, A. Polarization response in extreme nonlinear optics: when can the semiclassical approach be used? Laser Phys. Lett. 13, 045301 (2016).
Google Scholar
-
Yangaliev, D. N., Krainov, V. P. & Tolstikhin, O. I. Quantum theory of radiation by nonstationary systems with application to high-order harmonic generation. Phys. Rev. A 101, 013410 (2020).
Google Scholar
-
Gorlach, A., Neufeld, O., Rivera, N., Cohen, O. & Kaminer, I. The quantum-intense opt nature of high harmonic generation. Nat. Commun. 11, 4598 (2020).
Google Scholar
-
Lewenstein, M. et al. Generation of optical Schrödinger cat states in intense laser–matter interactions. Nat. Phys. 17, 1104–1108 (2021).
Google Scholar
-
Stammer, P. et al. Quantum electrodynamics of intense laser-matter interactions: a tool for quantum state engineering. PRX Quantum 4, 010201 (2023).
Google Scholar
-
Gorlach, A. et al. High-harmonic generation driven by quantum light. Nat. Phys. 19, 1689–1696 (2023).
Google Scholar
-
Stammer, P. Absence of quantum optical coherence in high harmonic generation. Phys. Rev. Res. 6, L032033 (2024).
Google Scholar
-
Even Tzur, M. et al. Photon-statistics force in ultrafast electron dynamics. Nat. Photon. 17, 501–509 (2023).
Google Scholar
-
Even Tzur, M. & Cohen, O. Motion of charged particles in bright squeezed vacuum. Light Sci. Appl. 13, 41 (2024).
Google Scholar
-
Tzur, M. E. et al. Generation of squeezed high-order harmonics. Phys. Rev. Res. 6, 033079 (2024).
Google Scholar
-
Stammer, P. On the limitations of the semi-classical picture in high harmonic generation. Nat. Phys. 20, 1040–1042 (2024).
Google Scholar
-
Bhattacharya, U. et al. Strong-laser–field physics, non-classical light states and quantum information science. Rep. Prog. Phys. 86, 094401 (2023).
Google Scholar
-
Lewenstein, M. et al. Attosecond physics and quantum information science. In International Conference on Attosecond Science and Technology 27–44 (Springer, 2012).
-
O’brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).
Google Scholar
-
Gilchrist, A. et al. Schrödinger cats and their power for quantum information processing. J. Opt. B Quantum Semiclassical Opt. 6, S828 (2004).
Google Scholar
-
Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).
-
Stammer, P. & Lewenstein, M. Quantum optics as applied quantum electrodynamics is back in town. Acta Phys. Pol. A 143, S42 (2023).
Google Scholar
-
Stammer, P. et al. High photon number entangled states and coherent state superposition from the extreme ultraviolet to the far infrared. Phys. Rev. Lett. 128, 123603 (2022).
Google Scholar
-
Stammer, P. Theory of entanglement and measurement in high-order harmonic generation. Phys. Rev. A 106, L050402 (2022).
Google Scholar
-
Stammer, P. et al. Entanglement and squeezing of the optical field modes in high harmonic generation. Phys. Rev. Lett. 132, 143603 (2024).
Google Scholar
-
Rivera-Dean, J. et al. Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions. Phys. Rev. A 105, 033714 (2022).
Google Scholar
-
Pizzi, A., Gorlach, A., Rivera, N., Nunnenkamp, A. & Kaminer, I. Light emission from strongly driven many-body systems. Nat. Phys. 19, 551–561 (2023).
Google Scholar
-
Lange, C. S., Hansen, T. & Madsen, L. B. Electron-correlation-induced nonclassicality of light from high-order harmonic generation. Phys. Rev. A 109, 033110 (2024).
Google Scholar
-
Gerry, C. C. & Knight, P. L. Introductory Quantum Optics (Cambridge Univ. Press, 2023).
-
Schleich, W. P. Quantum Optics in Phase Space (Wiley, 2011).
-
Rivera-Dean, J. et al. New schemes for creating large optical Schrödinger cat states using strong laser fields. J. Comput. Electron. 20, 2111–2123 (2021).
Google Scholar
-
Mandel, L. Non-classical states of the electromagnetic field. Phys. Scr. 1986, 34 (1986).
Google Scholar
-
Loudon, R. & Knight, P. L. Squeezed light. J. Mod. Opt. 34, 709–759 (1987).
Google Scholar
-
Hudson, R. L. When is the Wigner quasi-probability density non-negative? Rep. Prog. Phys. 6, 249–252 (1974).
Google Scholar
-
Lamprou, T., Rivera-Dean, J., Stammer, P., Lewenstein, M. & Tzallas, P. Nonlinear optics using intense optical Schrödinger “cat” states. Preprint at https://doi.org/10.48550/arXiv.2306.14480 (2023).
-
Walls, D. F. Squeezed states of light. Nature 306, 141–146 (1983).
Google Scholar
-
Lemieux, S. et al. Photon bunching in high-harmonic emission controlled by quantum light. Preprint at https://doi.org/10.48550/arXiv.2404.05474 (2024).
-
Rasputnyi, A. et al. High harmonic generation by bright squeezed vacuum. Preprint at https://doi.org/10.48550/arXiv.2403.15337 (2024).
-
Sloan, J. et al. Entangling extreme ultraviolet photons through strong field pair generation. Preprint at https://doi.org/10.48550/arXiv.2309.16466 (2023).
-
Yi, S., Babushkin, I., Smirnova, O. & Ivanov, M. Generation of massively entangled bright states of light during harmonic generation in resonant media. Preprint at https://doi.org/10.48550/arXiv.2401.02817 (2024).
-
Theidel, D. et al. Evidence of the quantum-optical nature of high-harmonic generation. Preprint at https://doi.org/10.48550/arXiv.2405.15022 (2024).
-
Reid, M. & Walls, D. Violations of classical inequalities in quantum optics. Phys. Rev. A 34, 1260 (1986).
Google Scholar
-
Wasak, T., Szańkowski, P., Ziń, P., Trippenbach, M. & Chwedeńczuk, J. Cauchy-Schwarz inequality and particle entanglement. Phys. Rev. A 90, 033616 (2014).
Google Scholar
-
Hillery, M. & Zubairy, M. S. Entanglement conditions for two-mode states. Phys. Rev. Lett. 96, 050503 (2006).
Google Scholar
-
Rivera-Dean, J. et al. Light-matter entanglement after above-threshold ionization processes in atoms. Phys. Rev. A 106, 063705 (2022).
Google Scholar
-
Milošević, D. Quantum theory of photon emission during strong-laser-field-induced ionization. Phys. Rev. A 108, 033110 (2023).
Google Scholar
-
Fang, Y., Sun, F.-X., He, Q. & Liu, Y. Strong-field ionization of hydrogen atoms with quantum light. Phys. Rev. Lett. 130, 253201 (2023).
Google Scholar
-
Wang, S. & Lai, X. High-order above-threshold ionization of an atom in intense quantum light. Phys. Rev. A 108, 063101 (2023).
Google Scholar
-
Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).
Google Scholar
-
Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).
Google Scholar
-
Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).
Google Scholar
-
Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002).
Google Scholar
-
Cederbaum, L. & Zobeley, J. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).
Google Scholar
-
Despré, V. et al. Attosecond hole migration in benzene molecules surviving nuclear motion. J. Phys. Chem. Lett. 6, 426–431 (2015).
Google Scholar
-
Du, H., Covington, C., Leone, S. R. & Varga, K. Excited-state electronic coherence in vinyl bromide ions. Phys. Rev. A 100, 053412 (2019).
Google Scholar
-
Matselyukh, D. T., Despré, V., Golubev, N. V., Kuleff, A. I. & Wörner, H. J. Decoherence and revival in attosecond charge migration driven by non-adiabatic dynamics. Nat. Phys. 18, 1206–1213 (2022).
Google Scholar
-
Folorunso, A. S. et al. Attochemistry regulation of charge migration. J. Phys. Chem. A 127, 1894–1900 (2023).
Google Scholar
-
Guillemin, R. et al. Postcollision interaction effects in KLL Auger spectra following argon 1s photoionization. Phys. Rev. A 92, 012503 (2015).
Google Scholar
-
Carlström, S., Mauritsson, J., Schafer, K. J., L’Huillier, A. & Gisselbrecht, M. Quantum coherence in photo-ionisation with tailored XUV pulses. J. Phys. B At. Mol. Opt. Phys. 51, 015201 (2017).
Google Scholar
-
Ruberti, M., Patchkovskii, S. & Averbukh, V. Quantum coherence in molecular photoionization. Phys. Chem. Chem. Phys. 24, 19673–19686 (2022).
Google Scholar
-
Smirnova, O. Attosecond prints of electrons. Nature 466, 701–702 (2010).
Google Scholar
-
Pabst, S., Greenman, L., Ho, P. J., Mazziotti, D. A. & Santra, R. Decoherence in attosecond photoionization. Phys. Rev. Lett. 106, 053003 (2011).
Google Scholar
-
Karamatskou, A., Goetz, R. E., Koch, C. P. & Santra, R. Suppression of hole decoherence in ultrafast photoionization. Phys. Rev. A 101, 043405 (2020).
Google Scholar
-
Vrakking, M. J. Control of attosecond entanglement and coherence. Phys. Rev. Lett. 126, 113203 (2021).
Google Scholar
-
Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).
Google Scholar
-
Laurell, H. et al. Continuous-variable quantum state tomography of photoelectrons. Phys. Rev. Res. 4, 033220 (2022).
Google Scholar
-
Remacle, F. & Levine, R. D. An electronic time scale in chemistry. Proc. Natl Acad. Sci. USA 103, 6793–6798 (2006).
Google Scholar
-
Yong, H., Sun, S., Gu, B. & Mukamel, S. Attosecond charge migration in molecules imaged by combined X-ray and electron diffraction. J. Am. Chem. Soc. 144, 20710–20716 (2022).
Google Scholar
-
Vacher, M., Bearpark, M. J., Robb, M. A. & Malhado, Ja. P. Electron dynamics upon ionization of polyatomic molecules: coupling to quantum nuclear motion and decoherence. Phys. Rev. Lett. 118, 083001 (2017).
Google Scholar
-
Arnold, C., Vendrell, O. & Santra, R. Electronic decoherence following photoionization: full quantum-dynamical treatment of the influence of nuclear motion. Phys. Rev. A 95, 033425 (2017).
Google Scholar
-
Arnold, C., Vendrell, O., Welsch, R. & Santra, R. Control of nuclear dynamics through conical intersections and electronic coherences. Phys. Rev. Lett. 120, 123001 (2018).
Google Scholar
-
Jia, D., Manz, J. & Yang, Y. De- and recoherence of charge migration in ionized iodoacetylene. J. Phys. Chem. Lett. 10, 4273–4277 (2019).
Google Scholar
-
Dey, D., Kuleff, A. I. & Worth, G. A. Quantum interference paves the way for long-lived electronic coherences. Phys. Rev. Lett. 129, 173203 (2022).
Google Scholar
-
Weber, T. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000).
Google Scholar
-
Becker, W., Liu, X., Ho, P. J. & Eberly, J. H. Theories of photoelectron correlation in laser-driven multiple atomic ionization. Rev. Mod. Phys. 84, 1011 (2012).
Google Scholar
-
Akoury, D. et al. The simplest double slit: interference and entanglement in double photoionization of H2. Science 318, 949–952 (2007).
Google Scholar
-
Ho, P. J., Panfili, R., Haan, S. L. & Eberly, J. H. Nonsequential double ionization as a completely classical photoelectric effect. Phys. Rev. Lett. 94, 093002 (2005).
Google Scholar
-
Hao, X. et al. Quantum effects in double ionization of argon below the threshold intensity. Phys. Rev. Lett. 112, 073002 (2014).
Google Scholar
-
Quan, W. et al. Quantum interference in laser-induced nonsequential double ionization. Phys. Rev. A 96, 032511 (2017).
Google Scholar
-
Maxwell, A. & de Morisson Faria, C. F. Controlling below-threshold nonsequential double ionization via quantum interference. Phys. Rev. Lett. 116, 143001 (2016).
Google Scholar
-
Harvey, T. R., Grillo, V. & McMorran, B. J. Stern-Gerlach-like approach to electron orbital angular momentum measurement. Phys. Rev. A 95, 021801 (2017).
Google Scholar
-
Noguchi, Y., Nakayama, S., Ishida, T., Saitoh, K. & Uchida, M. Efficient measurement of the orbital-angular-momentum spectrum of an electron beam via a Dammann vortex grating. Phys. Rev. Appl. 12, 064062 (2019).
Google Scholar
-
Schmidt-Böcking, H., Ullrich, J., Dörner, R. & Cocke, C. L. The COLTRIMS reaction microscope — the spyhole into the ultrafast entangled dynamics of atomic and molecular systems. Ann. Phys. 533, 2100134 (2021).
Google Scholar
-
Baldelli, N., Bhattacharya, U., González-Cuadra, D., Lewenstein, M. & Graß, T. Detecting Majorana zero modes via strong field dynamics. ACS Omega 7, 47424–47430 (2022).
Google Scholar
-
Bera, M. L. et al. Topological phase detection through high-harmonic spectroscopy in extended Su-Schrieffer-Heeger chains. Phys. Rev. B 108, 214104 (2023).
Google Scholar
-
Alcalà, J. et al. High-harmonic spectroscopy of quantum phase transitions in a high-Tc superconductor. Proc. Natl Acad. Sci. USA 119, e2207766119 (2022).
Google Scholar
-
Rivera-Dean, J. et al. Quantum-optical analysis of high-order harmonic generation in H2+ molecules. Phys. Rev. A 109, 033706 (2024).
Google Scholar
-
Lamprou, T. et al. Quantum-optical spectrometry in relativistic laser–plasma interactions using the high-harmonic generation process: a proposal. Photonics 8, 192 (2021).
Google Scholar
-
Rivera-Dean, J. et al. Nonclassical states of light after high-harmonic generation in semiconductors: a Bloch-based perspective. Phys. Rev. B 109, 035203 (2024).
Google Scholar
-
Rivera-Dean, J. et al. Quantum optical analysis of high-harmonic generation in solids within a Wannier-Bloch picture. Preprint at https://doi.org/10.48550/arXiv.2211.00033 (2022).
-
Gonoskov, I. et al. Nonclassical light generation and control from laser-driven semiconductor intraband excitations. Phys. Rev. B 109, 125110 (2024).
Google Scholar
-
Stammer, P., Martos, T. F., Lewenstein, M. & Rajchel-Mieldzioć, G. Metrological robustness of high photon number optical cat states. Quantum Sci. Technol. 9, 045047 (2024).
Google Scholar
-
Pladevall, X. O. & Mompart, J. Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology (CRC, 2019).
-
Elsayed, T. A., Mølmer, K. & Madsen, L. B. Entangled quantum dynamics of many-body systems using Bohmian trajectories. Sci. Rep. 8, 12704 (2018).
Google Scholar
-
Weber, A., Khokhlova, M. & Pisanty, E. Quantum tunnelling without a barrier. Preprint at https://doi.org/10.48550/arXiv.2311.14826 (2023).
-
Argüello-Luengo, J. et al. Analog simulation of high-harmonic generation in atoms. PRX Quantum 5, 010328 (2024).
Google Scholar
-
Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).
Google Scholar
-
Ruberti, M. Onset of ionic coherence and ultrafast charge dynamics in attosecond molecular ionisation. Phys. Chem. Chem. Phys. 21, 17584–17604 (2019).
Google Scholar
Acknowledgements
The authors thank the organizers of the ‘Quantum Battles in Attoscience 2023’ conference for the opportunity and support during the preparation for the discussion. L.C.-R. acknowledges financial support from the AQuA DIP project, grant number EP/J019143/1. A.F. acknowledges financial support from the Cluster of Excellence ‘CUI: Advanced Imaging of Matter’ of the Deutsche Forschungsgemeinschaft (DFG) – EXC 2056 – project ID 390715994, from the International Max Planck Graduate School for Ultrafast imaging & Structural Dynamics (IMPRS-UFAST) and from the Christiane Nüsslein-Vollhard-Foundation. D.D. acknowledges funding from the National Science Foundation under grant number CHE-2347622 and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement number 892554. P.S. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 847517. Institut de Ciencies Fotoniques (ICFO) group acknowledges support from the following: Ministerio de Ciencia y Innovation Agencia Estatal de Investigaciones (R&D project CEX2019-000910-S, AEI/10.13039/501100011033, Plan National FIDEUA PID2019-106901GB-I00, FPI), Fundació Privada Cellex, Fundació Mir-Puig, Generalitat de Catalunya (AGAUR Grant number 2017 SGR 1341, CERCA programme), MICIIN with funding from European Union NextGenerationEU (PRTR-C17.I1), Generalitat de Catalunya, and EU Horizon 2020 FET-OPEN OPTOlogic (grant number 899794) and ERC AdG NOQIA. Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union, European Commission, European Climate, Infrastructure and Environment Executive Agency (CINEA), nor any other granting authority. Neither the European Union nor any granting authority can be held responsible for them.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Katsumi Midorikawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Cruz-Rodriguez, L., Dey, D., Freibert, A. et al. Quantum phenomena in attosecond science.
Nat Rev Phys (2024). https://doi.org/10.1038/s42254-024-00769-2
-
Accepted: 11 September 2024
-
Published: 07 October 2024
-
DOI: https://doi.org/10.1038/s42254-024-00769-2