Theory and the future of land-climate science


Abstract

Climate over land—where humans live and the majority of food is produced—is changing rapidly, driving severe impacts through extreme heat, wildfires, drought and flooding. Our ability to monitor and model this changing climate is being transformed through new observational systems and increasingly complex Earth system models. But fundamental understanding of the processes governing land climate has not kept pace, weakening our ability to interpret and utilize data from these advanced tools. Here we argue that for land-climate science to accelerate forwards, an alternative approach is needed. We advocate a parallel scientific effort, one emphasizing robust theories, that aims to inspire current and future land-climate scientists to better comprehend the processes governing land climate, its variability and extremes and its sensitivity to global warming. Such an effort, we believe, is essential to better understand the risks people face, where they live, in an era of climate change.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%;padding:30px 5px;display:flex;flex-direction:column;justify-content:space-between}.BuyBoxSection-683559780 p{margin:0}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 ul{margin:0}.BuyBoxSection-683559780 .link-usp{display:list-item;margin:0;margin-left:20px;padding-top:6px;list-style-position:inside}.BuyBoxSection-683559780 .link-usp span{font-size:14px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2737859108:hover{text-decoration:none}.BuyBoxSection-683559780 .btn-secondary{background:#fff}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1636778223{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2737859108{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:20px}.Button-505204839 .btn-secondary-label,.Button-1078489254 .btn-secondary-label,.Button-2737859108 .btn-secondary-label{color:#069}
/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulated climate warming is larger and more uncertain over land.
Fig. 2: Atmospheric dynamics constrain changes in tropical land climate.
Fig. 3: Evapotranspiration inferred from temperature and humidity measurements.
Fig. 4: Stomatal response to increasing CO2 boosts river run-off.

Data availability

The model data used to produce Fig. 1 are provided by the World Climate Research Programme’s Working Group on Coupled Modelling and can be accessed at https://esgf-node.llnl.gov/search/cmip6/.

Code availability

The code used to produce Fig. 1 is available from the corresponding author on request.

References

  1. Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. H. & Johns, T. C. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim. Dyn. 30, 455–465 (2008).

    Article 

    Google Scholar 

  2. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article 

    Google Scholar 

  3. Milly, P. C. & Dunne, K. A. Colorado river flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367, 1252–1255 (2020).

    Article 
    CAS 

    Google Scholar 

  4. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article 

    Google Scholar 

  5. Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    Article 
    CAS 

    Google Scholar 

  6. Schmidt, D. F. & Grise, K. M. The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett. 44, 10573–10582 (2017).

    Article 

    Google Scholar 

  7. Berg, A. & Sheffield, J. Evapotranspiration partitioning in CMIP5 models: uncertainties and future projections. J. Clim. 32, 2653–2671 (2019).

    Article 

    Google Scholar 

  8. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, E2019EF001461 (2020).

  9. Hohenegger, C. & Stevens, B. Tropical continents rainier than expected from geometrical constraints. AGU Adv. 3, E2021AV000636 (2022).

  10. Simpson, I. R. et al. Observed humidity trends in dry regions contradict climate models. Proc. Natl Acad. Sci. USA 121, e2302480120 (2024).

    Article 
    CAS 

    Google Scholar 

  11. Lee, Y.-C. & Wang, Y.-C. Evaluating diurnal rainfall signal performance from CMIP5 to CMIP6. J. Clim. 34, 7607–7623 (2021).

    Article 

    Google Scholar 

  12. Seneviratne, S. I. et al. Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).

    Article 

    Google Scholar 

  13. Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).

    Article 

    Google Scholar 

  14. Lambert, F. H. & Chiang, J. C. H. Control of land–ocean temperature contrast by ocean heat uptake. Geophys. Res. Lett. 34, L13704 (2007).

  15. Teng, H., Leung, R., Branstator, G., Lu, J. & Ding, Q. Warming pattern over the Northern Hemisphere midlatitudes in boreal summer 1979–2020. J. Clim. 35, 3479–3494 (2022).

    Article 

    Google Scholar 

  16. Best, M. J. et al. The plumbing of land surface models: benchmarking model performance. J. Hydrometeorol. 16, 1425–1442 (2015).

    Article 

    Google Scholar 

  17. Haughton, N. et al. The plumbing of land surface models: Is poor performance a result of methodology or data quality? J. Hydrometeorol. 17, 1705–1723 (2016).

    Article 

    Google Scholar 

  18. Haughton, N., Abramowitz, G. & Pitman, A. J. On the predictability of land surface fluxes from meteorological variables. Geosci. Model Dev. 11, 195–212 (2018).

    Article 

    Google Scholar 

  19. Li, Z.-L. et al. Soil moisture retrieval from remote sensing measurements: current knowledge and directions for the future. Earth Sci. Rev. 218, 103673 (2021).

    Article 

    Google Scholar 

  20. Willett, K. et al. HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim. Past 10, 1983–2006 (2014).

    Article 

    Google Scholar 

  21. Pongratz, J. et al. Land use effects on climate: current state, recent progress, and emerging topics. Curr. Clim. Change Rep. 7, 99–120 (2021).

    Article 

    Google Scholar 

  22. Hohenegger, C. et al. ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales. Geosci. Model Dev. 16, 779–811 (2023).

    Article 
    CAS 

    Google Scholar 

  23. Beven, K. J. & Cloke, H. L. Comment on: ‘Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water’ by Eric F. Wood et al. Water Resour. Res. 48, W01801 (2012).

  24. Fan, Y. et al. Hillslope hydrology in global change research and Earth system modeling. Water Resour. Res. 55, 1737–1772 (2019).

    Article 

    Google Scholar 

  25. Barlage, M., Chen, F., Rasmussen, R., Zhang, Z. & Miguez-Macho, G. The importance of scale-dependent groundwater processes in land–atmosphere interactions over the central United States. Geophys. Res. Lett. 48, E2020GL092171 (2021).

  26. Pongratz, J. et al. Models meet data: challenges and opportunities in implementing land management in Earth system models. Glob. Change Biol. 24, 1470–1487 (2018).

    Article 

    Google Scholar 

  27. Clark, M. P. et al. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrol. Earth Syst. Sci. 21, 3427–3440 (2017).

    Article 

    Google Scholar 

  28. Schneider, T., Lan, S., Stuart, A. & Teixeira, J. Earth system modeling 2.0: a blueprint for models that learn from observations and targeted high-resolution simulations. Geophys. Res. Lett. 44, 12–396 (2017).

    Article 

    Google Scholar 

  29. Wulfmeyer, V. et al. Estimation of the surface fluxes for heat and momentum in unstable conditions with machine learning and similarity approaches for the LAFE data set. Boundary Layer Meteorol. 186, 337–371 (2023).

    Article 

    Google Scholar 

  30. Dagon, K., Sanderson, B. M., Fisher, R. A. & Lawrence, D. M. A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 223–244 (2020).

    Article 

    Google Scholar 

  31. Yuval, J. & O’Gorman, P. A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nat. Commun. 11, 3295 (2020).

    Article 
    CAS 

    Google Scholar 

  32. Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale closures. Geophys. Res. Lett. 47, E2020GL088376 (2020).

  33. Betts, A. K. Idealized model for equilibrium boundary layer over land. J. Hydrometeorol. 1, 507–523 (2000).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1175/1525-7541(2000)0012.0.CO;2″ data-track-item_id=”10.1175/1525-7541(2000)0012.0.CO;2″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1175%2F1525-7541%282000%29001%3C0507%3AIMFEBL%3E2.0.CO%3B2″ aria-label=”Article reference 33″ data-doi=”10.1175/1525-7541(2000)0012.0.CO;2″>Article 

    Google Scholar 

  34. Brubaker, K. L. & Entekhabi, D. An analytic approach to modeling land–atmosphere interaction: 1. Construct and equilibrium behavior. Water Resour. Res. 31, 619–632 (1995).

    Article 

    Google Scholar 

  35. Findell, K. L. & Eltahir, E. A. Atmospheric controls on soil moisture–boundary layer interactions. Part I: framework development. J. Hydrometeorol. 4, 552–569 (2003).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1175/1525-7541(2003)0042.0.CO;2″ data-track-item_id=”10.1175/1525-7541(2003)0042.0.CO;2″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1175%2F1525-7541%282003%29004%3C0552%3AACOSML%3E2.0.CO%3B2″ aria-label=”Article reference 35″ data-doi=”10.1175/1525-7541(2003)0042.0.CO;2″>Article 

    Google Scholar 

  36. McColl, K. A. & Rigden, A. J. Emergent simplicity of continental evapotranspiration. Geophys. Res. Lett. 47, E2020GL087101 (2020).

  37. Scheff, J., Coats, S. & Laguë, M. M. Why do the global warming responses of land-surface models and climatic dryness metrics disagree? Earths Future 10, E2022EF002814 (2022).

  38. Klein, S. A. & Hall, A. Emergent constraints for cloud feedbacks. Curr. Clim. Change Rep. 1, 276–287 (2015).

    Article 

    Google Scholar 

  39. Byrne, M. P. & O’Gorman, P. A. Land–ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J. Clim. 26, 4000–4016 (2013).

    Article 

    Google Scholar 

  40. Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

    Article 
    CAS 

    Google Scholar 

  41. Manabe, S., Stouffer, R. J., Spelman, M. J. & Bryan, K. Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J. Clim. 4, 785–818 (1991).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1175/1520-0442(1991)0042.0.CO;2″ data-track-item_id=”10.1175/1520-0442(1991)0042.0.CO;2″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0442%281991%29004%3C0785%3ATROACO%3E2.0.CO%3B2″ aria-label=”Article reference 41″ data-doi=”10.1175/1520-0442(1991)0042.0.CO;2″>Article 

    Google Scholar 

  42. Arakawa, A. & Schubert, W. H. Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci. 31, 674–701 (1974).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1175/1520-0469(1974)0312.0.CO;2″ data-track-item_id=”10.1175/1520-0469(1974)0312.0.CO;2″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0469%281974%29031%3C0674%3AIOACCE%3E2.0.CO%3B2″ aria-label=”Article reference 42″ data-doi=”10.1175/1520-0469(1974)0312.0.CO;2″>Article 

    Google Scholar 

  43. Sobel, A. H. & Bretherton, C. S. Modeling tropical precipitation in a single column. J. Clim. 13, 4378–4392 (2000).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1175/1520-0442(2000)0132.0.CO;2″ data-track-item_id=”10.1175/1520-0442(2000)0132.0.CO;2″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0442%282000%29013%3C4378%3AMTPIAS%3E2.0.CO%3B2″ aria-label=”Article reference 43″ data-doi=”10.1175/1520-0442(2000)0132.0.CO;2″>Article 

    Google Scholar 

  44. Byrne, M. P. & O’Gorman, P. A. Link between land–ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett. 40, 5223–5227 (2013).

    Article 

    Google Scholar 

  45. Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article 

    Google Scholar 

  46. Zhang, Y., Held, I. & Fueglistaler, S. Projections of tropical heat stress constrained by atmospheric dynamics. Nat. Geosci. 14, 133–137 (2021).

    Article 
    CAS 

    Google Scholar 

  47. Duan, S. Q., Findell, K. L. & Fueglistaler, S. A. Coherent mechanistic patterns of tropical land hydroclimate changes. Geophys. Res. Lett. 50, e2022GL102285 (2023).

    Article 

    Google Scholar 

  48. Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).

    Article 
    CAS 

    Google Scholar 

  49. Byrne, M. P. & O’Gorman, P. A. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J. Clim. 29, 9045–9061 (2016).

    Article 

    Google Scholar 

  50. Buzan, J. R. & Huber, M. Moist heat stress on a hotter Earth. Annu. Rev. Earth Planet. Sci. 48, 623–655 (2020).

    Article 
    CAS 

    Google Scholar 

  51. Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).

    Article 
    CAS 

    Google Scholar 

  52. Teuling, A. et al. A regional perspective on trends in continental evaporation. Geophys. Res. Lett. 36, L02404 (2009).

  53. Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    Article 
    CAS 

    Google Scholar 

  54. Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article 

    Google Scholar 

  55. Mueller, B. & Seneviratne, S. I. Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett. 41, 128–134 (2014).

    Article 
    CAS 

    Google Scholar 

  56. McColl, K. A., Salvucci, G. D. & Gentine, P. Surface flux equilibrium theory explains an empirical estimate of water-limited daily evapotranspiration. J. Adv. Model. Earth Syst. 11, 2036–2049 (2019).

    Article 

    Google Scholar 

  57. Chen, S., McColl, K. A., Berg, A. & Huang, Y. Surface flux equilibrium estimates of evapotranspiration at large spatial scales. J. Hydrometeorol. 22, 765–779 (2021).

    Article 

    Google Scholar 

  58. Budyko, M. I.Climate and Life (Academic Press, 1974).

  59. Monteith, J. L. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 107, 1–27 (1981).

    Article 

    Google Scholar 

  60. Scheff, J. & Frierson, D. M. W. Scaling potential evapotranspiration with greenhouse warming. J. Clim. 27, 1539–1558 (2014).

    Article 

    Google Scholar 

  61. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article 

    Google Scholar 

  62. Dai, A. in Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts (eds Tang, Q. & Oki, T.) 17–37 (John Wiley & Sons, 2016).

  63. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Article 

    Google Scholar 

  64. Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M. & Seneviratne, S. I. Identifying key driving processes of major recent heat waves. J. Geophys. Res. Atmos. 124, 11746–11765 (2019).

    Article 

    Google Scholar 

  65. Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Clim. 27, 7921–7948 (2014).

    Article 

    Google Scholar 

  66. Kang, S. M., Held, I. M., Frierson, D. M. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab–ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article 

    Google Scholar 

  67. Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci. 1, 515–519 (2008).

    Article 
    CAS 

    Google Scholar 

  68. Hohenegger, C. & Stevens, B. The role of the permanent wilting point in controlling the spatial distribution of precipitation. Proc. Natl Acad. Sci. USA 115, 5692–5697 (2018).

    Article 
    CAS 

    Google Scholar 

  69. Zhou, W. & Xie, S.-P. A hierarchy of idealized monsoons in an intermediate GCM. J. Clim. 31, 9021–9036 (2018).

    Article 

    Google Scholar 

  70. Biasutti, M., Russotto, R. D., Voigt, A. & Blackmon-Luca, C. C. The effect of an equatorial continent on the tropical rain belt. Part I: annual mean changes in the ITCZ. J. Clim. 34, 5813–5828 (2021).

    Google Scholar 

  71. Geen, R., Bordoni, S., Battisti, D. S. & Hui, K. Monsoons, ITCZs, and the concept of the global monsoon. Rev. Geophys. 58, e2020RG000700 (2020).

    Article 

    Google Scholar 

  72. Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).

    Article 

    Google Scholar 

  73. Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W. & Dee, D. P. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. Atmos. 115, D01110 (2010).

    Article 

    Google Scholar 

  74. Vargas Zeppetello, L. R., Trevino, A. M. & Huybers, P. Disentangling contributions to past and future trends in US surface soil moisture. Nat. Water 2, 127–138 (2024).

  75. Berg, A., Sheffield, J. & Milly, P. C. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    Article 

    Google Scholar 

  76. Zhang, Y. & Boos, W. R. An upper bound for extreme temperatures over midlatitude land. Proc. Natl Acad. Sci. USA 120, E2215278120 (2023).

  77. Williams, A. I. & O’Gorman, P. A. Summer–winter contrast in the response of precipitation extremes to climate change over Northern Hemisphere land. Geophys. Res. Lett. 49, E2021GL096531 (2022).

  78. Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the ‘wet-get-wetter, dry-get-drier’ scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).

    Article 

    Google Scholar 

  79. Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Change Rep. 4, 301–312 (2018).

    Article 

    Google Scholar 

  80. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article 
    CAS 

    Google Scholar 

  81. Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).

    Article 

    Google Scholar 

  82. Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).

    Article 

    Google Scholar 

  83. Anderegg, W. R. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).

    Article 

    Google Scholar 

  84. Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Emergent constraints on climate–carbon cycle feedbacks in the CMIP5 Earth system models. J. Geophys. Res. Biogeosci. 119, 794–807 (2014).

    Article 
    CAS 

    Google Scholar 

  85. Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

    Article 

    Google Scholar 

  86. Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article 

    Google Scholar 

  87. Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).

    Article 

    Google Scholar 

  88. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article 
    CAS 

    Google Scholar 

  89. Anderegg, W. R. et al. A climate risk analysis of Earth’s forests in the 21st century. Science 377, 1099–1103 (2022).

    Article 
    CAS 

    Google Scholar 

  90. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article 
    CAS 

    Google Scholar 

  91. Braghiere, R. K. et al. Tipping point in North American Arctic-boreal carbon sink persists in new generation Earth system models despite reduced uncertainty. Environ. Res. Lett. 18, 025008 (2023).

  92. Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article 
    CAS 

    Google Scholar 

  93. Pisarchik, A. N. & Feudel, U. Control of multistability. Phys. Rep. 540, 167–218 (2014).

    Article 
    CAS 

    Google Scholar 

  94. van Nes, E. H., Hirota, M., Holmgren, M. & Scheffer, M. Tipping points in tropical tree cover: linking theory to data. Glob. Change Biol. 20, 1016–1021 (2014).

    Article 

    Google Scholar 

  95. Vallis, G. K. et al. Isca, v1. 0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geosci. Model Dev. 11, 843–859 (2018).

    Article 

    Google Scholar 

  96. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  97. Clark, M. P. et al. A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resour. Res. 51, 2515–2542 (2015).

    Article 

    Google Scholar 

  98. Santanello, J. A. Jr et al. Land–atmosphere interactions: the LoCo perspective. Bull. Am. Meteorol. Soc. 99, 1253–1272 (2018).

    Article 

    Google Scholar 

  99. Entekhabi, D. et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).

    Article 

    Google Scholar 

  100. Lehner, F. & Deser, C. Origin, importance, and predictive limits of internal climate variability. Environ. Res. Clim. 2, 023001 (2023).

Download references

Acknowledgements

We thank the Carnegie Trust for the Universities of Scotland for generously funding a workshop on land-climate science at the University of St Andrews (6–8 June 2022), which inspired this Perspective. We also thank M. Gomis for graphical assistance with Figs. 2–4. M.P.B. was supported by the UKRI Frontier Research Guarantee scheme (grant number EP/Y027868/1), S.A.H. was funded by NSF award no. 2123327 and A.D. was funded by NSF award no. AGS-2015780.

Author information

Authors and Affiliations

Authors

Contributions

M.P.B., G.C.H. and J.S. wrote the initial draft. All authors contributed to editing and revising the manuscript.

Corresponding author

Correspondence to
Michael P. Byrne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Paul Dirmeyer, Kirsten Findell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, M.P., Hegerl, G.C., Scheff, J. et al. Theory and the future of land-climate science.
Nat. Geosci. (2024). https://doi.org/10.1038/s41561-024-01553-8

Download citation

  • Received: 24 July 2023

  • Accepted: 27 August 2024

  • Published: 11 October 2024

  • DOI: https://doi.org/10.1038/s41561-024-01553-8


Leave a Reply

Your email address will not be published. Required fields are marked *