Abstract
Language is a uniquely human trait at the core of human interactions. The language people use often reflects their personality, intentions and state of mind. With the integration of the Internet and social media into everyday life, much of human communication is documented as written text. These online forms of communication (for example, blogs, reviews, social media posts and emails) provide a window into human behaviour and therefore present abundant research opportunities for behavioural science. In this Review, we describe how natural language processing (NLP) can be used to analyse text data in behavioural science. First, we review applications of text data in behavioural science. Second, we describe the NLP pipeline and explain the underlying modelling approaches (for example, dictionary-based approaches and large language models). We discuss the advantages and disadvantages of these methods for behavioural science, in particular with respect to the trade-off between interpretability and accuracy. Finally, we provide actionable recommendations for using NLP to ensure rigour and reproducibility.
This is a preview of subscription content, access via your institution
Access options
/* style specs end */
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */



Similar content being viewed by others

How developments in natural language processing help us in understanding human behaviour

An analytical framework for corpus-based translation studies

Natural language analyzed with AI-based transformers predict traditional subjective well-being measures approaching the theoretical upper limits in accuracy
References
-
Dixon, S. J. Number of social media users worldwide from 2017 to 2028. Statista https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (2024).
-
Ceci, L. Number of sent and received e-mails per day worldwide from 2018 to 2027. Statista https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/ (2024).
-
GilPress. WhatsApp statistics, users, demographics as of 2024. What’s the Big Data https://whatsthebigdata.com/whatsapp-statistics/ (2023).
-
Robertson, C. E., Shariff, A. & van Bavel, J. J. Morality in the anthropocene: the perversion of compassion and punishment in the online world. PNAS Nexus 3, pgae193 (2024).
Google Scholar
-
Morant, L. The truth behind 6 second ads. Medium https://medium.com/@Lyndon/the-tyranny-of-six-seconds-592b94160877 (2019).
-
Wilkerson, J. & Casas, A. Large-scale computerized text analysis in political science: opportunities and challenges. Annu. Rev. Political Sci. 20, 529–544 (2017).
Google Scholar
-
Kennedy, B., Ashokkumar, A., Boyd, R. L. & Dehghani, M. in Handbook of Language Analysis in Psychology (eds Dehghani M. & Boyd, R. L.) 3–62 (Guilford, 2022).
-
Jackson, J. C. et al. From text to thought: how analyzing language can advance psychological science. Perspect. Psychol. Sci. 17, 805–826 (2022).
Google Scholar
-
Boyd, R. L. & Pennebaker, J. W. Language-based personality: a new approach to personality in a digital world. Curr. Opin. Behav. Sci. 18, 63–68 (2017).
Google Scholar
-
Kahn, J. H., Tobin, R. M., Massey, A. E. & Anderson, J. A. Measuring emotional expression with the linguistic inquiry and word count. Am. J. Psychol. 120, 263–286 (2007).
Google Scholar
-
Rocklage, M. D., Rucker, D. D. & Nordgren, L. F. Persuasion, emotion, and language: the intent to persuade transforms language via emotionality. Psychol. Sci. 29, 749–760 (2018).
Google Scholar
-
Rathje, S., van Bavel, J. J. & van der Linden, S. Out-group animosity drives engagement on social media. Proc. Natl Acad. Sci. USA 118, e2024292118 (2021).
Google Scholar
-
Rogers, N. & Jones, J. J. Using Twitter bios to measure changes in self-identity: are Americans defining themselves more politically over time? J. Soc. Comput. 2, 1–13 (2021).
Google Scholar
-
Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H. & Eichstaedt, J. C. Detecting depression and mental illness on social media: an integrative review. Curr. Opin. Behav. Sci. 18, 43–49 (2017).
Google Scholar
-
Pennebaker, J. W. & King, L. A. Linguistic styles: language use as an individual difference. J. Pers. Soc. Psychol. 77, 1296–1312 (1999).
Google Scholar
-
Pennebaker, J. W., Chung, C. K., Frazee, J., Lavergne, G. M. & Beaver, D. I. When small words foretell academic success: the case of college admissions essays. PLoS ONE 9, e115844 (2014).
Google Scholar
-
Pennebaker, J. W. & Francis, M. E. Cognitive, emotional, and language processes in disclosure. Cogn. Emot. 10, 601–626 (1996).
Google Scholar
-
Manning, C. & Schütze, H. Foundations of Statistical Natural Language Processing (MIT Press, 1999).
-
Tausczik, Y. R. & Pennebaker, J. W. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24–54 (2009).
Google Scholar
-
Feuerriegel, S., Hartmann, J., Janiesch, C. & Zschech, P. Generative AI. Bus. Inf. Syst. Eng. 66, 111–126 (2024).
Google Scholar
-
Rathje, S. et al. GPT is an effective tool for multilingual psychological text analysis. Proc. Natl Acad. Sci. USA 121, e2308950121 (2024).
Google Scholar
-
Steigerwald, E. et al. Overcoming language barriers in academia: machine translation tools and a vision for a multilingual future. BioScience 72, 988–998 (2022).
Google Scholar
-
Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29 (2010).
Google Scholar
-
Ghai, S. It’s time to reimagine sample diversity and retire the WEIRD dichotomy. Nat. Hum. Behav. 5, 971–972 (2021).
Google Scholar
-
Blasi, D. E., Henrich, J., Adamou, E., Kemmerer, D. & Majid, A. Over-reliance on English hinders cognitive science. Trends Cognit. Sci. 26, 1153–1170 (2022).
Google Scholar
-
Shibayama, S., Yin, D. & Matsumoto, K. Measuring novelty in science with word embedding. PLoS ONE 16, e0254034 (2021).
Google Scholar
-
Just, J., Ströhle, T., Füller, J. & Hutter, K. AI-based novelty detection in crowdsourced idea spaces. Innovation 6, 359–386 (2023).
-
Toubia, O. & Netzer, O. Idea generation, creativity, and prototypicality. Mark. Sci. 36, 1–20 (2017).
Google Scholar
-
Blodgett, S. L., Barocas, S., Daumé III, H. & Wallach, H. Language (technology) is power: a critical survey of “bias” in NLP. In Proc. Annual Meet. Assoc. Computational Linguistics (eds. Jurafsky, D. et al.) 5454–5476 (ACL, 2020).
-
Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan & Zou, James Word embeddings quantify 100 years of gender and ethnic stereotypes. Proc. Natl Acad. Sci. USA 115, E3635–E3644 (2018).
Google Scholar
-
Page, R. Narratives Online: Shared Stories in Social Media (Cambridge Univ. Press, 2018).
-
Yu, C. H., Jannasch-Pennell, A. & DiGangi, S. Compatibility between text mining and qualitative research in the perspectives of grounded theory, content analysis, and reliability. Qualitative Rep. 16, 730–744 (2011).
-
Hamilton, W. L., Leskovec, J. & Jurafsky, D. Diachronic word embeddings reveal statistical laws of semantic change. In Proc. Annual Meet. Assoc. Computational Linguistics (eds. Erk, K. & Smith, N.) 1489–1501 (ACL, 2016)
-
Kulkarni, V., Al-Rfou, R., Perozzi, B. & Skiena, S. Statistically significant detection of linguistic change. In Proc. Int. Conf. World Wide Web (eds. Gangemi, A. et al.) 625–635 (ACM, 2015)
-
Dunivin, Z. O., Yan, H. Y., Ince, J. & Rojas, F. Black lives matter protests shift public discourse. Proc. Natl Acad. Sci. USA 119, e2117320119 (2022).
Google Scholar
-
Jakubik, J., Vössing, M., Pröllochs, N., Bär, D. & Feuerriegel, S. Online emotions during the storming of the US capitol: evidence from the social media network Parler. In Proc. Int. AAAI Conf. Web and Social Media 423–434 (AAAI, 2023).
-
Murphy, G. The Big Book of Concepts. (MIT Press, 2004).
-
Boroditsky, L. Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cognit. Psychol. 43, 1–22 (2001).
Google Scholar
-
Gilardi, F., Alizadeh, M. & Kubli, M. ChatGPT outperforms crowd workers for text-annotation tasks. Proc. Natl Acad. Sci. USA 120, e2305016120 (2023).
Google Scholar
-
Ziabari, A. S. et al. Reinforced multiple instance selection for speaker attribute prediction. In Proc. Conf. North American Chapter of the Assoc. Computational Linguistics: Human Language Technologies (eds. Duh, K., Gomez, H. & Bethard, S.) 3307–3321 (ACL, 2024)
-
Krugmann, J. O. & Hartmann, J. Sentiment analysis in the age of generative AI. Customer Needs Solut. 11, 3 (2024).
Google Scholar
-
Mohammad, S. M. in Emotion Measurement (ed. Meiselman, H. L.) 201–237 (Elsevier, 2016)
-
Kratzwald, B., Ilić, S., Kraus, M., Feuerriegel, S. & Prendinger, H. Deep learning for affective computing: text-based emotion recognition in decision support. Decis. Support. Syst. 115, 24–35 (2018).
Google Scholar
-
Hartmann, J., Heitmann, M., Siebert, C. & Schamp, C. More than a feeling: accuracy and application of sentiment analysis. Int. J. Res. Mark. 40, 75–87 (2023).
Google Scholar
-
Mohammad, S. M., Kiritchenko, S., Sobhani, P., Zhu, X. & Cherry, C. SemEval-2016 Task 6: detecting stance in tweets. In Proc. Int. Workshop on Semantic Evaluation (eds. Bethard, S. et al.) 31–41 (ACL, 2016).
-
Mohammad, S. M., Sobhani, P. & Kiritchenko, S. Stance and sentiment in tweets. ACM Trans. Internet Technol. Argumentati. Soc. Media 17, 3 (2017).
-
Liu, B. & Zhang, L. in Mining Text Data (eds Aggarwal, C. C. & Zhai, C.) 415–463 (Springer US, 2012).
-
Spitzley, L. A. et al. Linguistic measures of personality in group discussions. Front. Psychol. 13, 887616 (2022).
Google Scholar
-
Lutz, B., Adam, M., Feuerriegel, S., Pröllochs, N. & Neumann, D. Which linguistic cues make people fall for fake news? A comparison of cognitive and affective processing. In Proc. ACM on Human–Computer Interaction (eds. Nichols, Jeff) 1–22 (ACM, 2024).
-
van Kleef, G. A., van den Berg, H. & Heerdink, M. W. The persuasive power of emotions: effects of emotional expressions on attitude formation and change. J. Appl. Psychol. 100, 1124–1142 (2015).
Google Scholar
-
Schwartz, H. A. et al. Personality, gender, and age in the language of social media: the open-vocabulary approach. PLoS ONE 8, e73791 (2013).
Google Scholar
-
Vine, V., Boyd, R. L. & Pennebaker, J. W. Natural emotion vocabularies as windows on distress and well-being. Nat. Commun. 11, 4525 (2020).
Google Scholar
-
Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl Acad. Sci. USA 115, 11203–11208 (2018).
Google Scholar
-
Chen, S., Zhang, Z., Wu, M. & Zhu, K. Detection of multiple mental disorders from social media with two-stream psychiatric experts. In Proc. Conf. Empirical Methods in Natural Language Processing (eds. Bouamor, H., Pino, J. & Bali, K.) 9071–9084 (ACL, 2023).
-
Eichstaedt, J. C. et al. Psychological language on Twitter predicts county-level heart disease mortality. Psychol. Sci. 26, 159–169 (2015).
Google Scholar
-
Mooijman, M., Hoover, J., Lin, Y., Ji, H. & Dehghani, M. Moralization in social networks and the emergence of violence during protests. Nat. Hum. Behav. 2, 389–396 (2018).
Google Scholar
-
Tan, C., Niculae, V., Danescu-Niculescu-Mizil, C. & Lee, L. Winning arguments: interaction dynamics and persuasion strategies in good-faith online discussions. In Proc. Int. Conf. World Wide Web (eds. Bourdeau, J. et al.) 613–624 (ACM, 2016).
-
Denny, M. J. & Spirling, A. Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Political Anal. 26, 168–189 (2018).
Google Scholar
-
Toetzke, M., Banholzer, N. & Feuerriegel, S. Monitoring global development aid with machine learning. Nat. Sustain. 5, 533–541 (2022).
Google Scholar
-
Tenzer, H., Feuerriegel, S. & Piekkari, R. AI machine translation tools must be taught cultural differences too. Nature 630, 820 (2024).
Google Scholar
-
Fokkens, A. et al. Offspring from reproduction problems: what replication failure teaches us. In Proc. Annual Meet. Assoc. Computational Linguistics (eds. Schuetze, H., Fung, P. & Poesio, M.) 1691–1701 (ACL, 2013).
-
Ulmer, D. et al. Experimental standards for deep learning in natural language processing research. In Findings of the Association for Computational Linguistics: Empirical Methods in Natural Language Processing (eds. Goldberg, Y., Kozareva, Z. & Zhang, Y.) 2673–2692 (ACL, 2022).
-
Salton, G. A Theory of Indexing (Society for Industrial and Applied Mathematics, 1975).
-
Le, Q. & Mikolov, T. Distributed representations of sentences and documents. In Proc. Int. Conf. Machine Learning 1188–1196 (PMLR, 2014)
-
Collobert, R. & Weston, J. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proc. Int. Conf. Machine Learning 160–167 (ACM, 2008).
-
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems (eds. Burges, C. J. et al.) 3111–3119 (Curran Associates Inc., 2013).
-
Pennington, J., Socher, R. & Manning, C. D. GloVe: global vectors for word representation. In Proc. Conf. Empirical Methods in Natural Language Processing (eds. Moschitti, A., Pang, B. & Daelemans, W.) 1532–1543 (ACL, 2014).
-
Dai, A. M., Olah, C. & Le, Q. V. Document embedding with paragraph vectors. Preprint at https://doi.org/10.48550/arXiv.1507.07998 (2015).
-
Harris, Z. S. Distributional Structure (Word, 1954).
-
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding.In Proc. Conf. North American Chapter of the Assoc. Computational Linguistics (eds. Burstein, J., Doran, C. & Solorio, T.) 4171–4186 (ACL, 2019).
-
Tokita, C. K. et al. Measuring receptivity to misinformation at scale on a social media platform. PNAS Nexus 3, page396 (2024).
-
Hart, R. P. & Carroll, C. DICTION: The Text-Analysis Program (Sage, 2011).
-
Stone, P. J., Dunphy, D. C. & Smith, M. S. The General Inquirer: A Computer Approach to Content Analysis (The MIT Press, 1966).
-
Rinker, T., Goodrich, B. & Kurkiewicz, D. qdap: Bridging the Gap between Qualitative Data and Quantitative Analysis (R Project for Statistical Computing, 2013).
-
Mohammad, S. M. & Turney, P. D. Crowdsourcing a word–emotion association lexicon. Comput. Intell. 29, 436–465 (2013).
Google Scholar
-
Graham, J., Haidt, J. & Nosek, B. A. Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96, 1029–1046 (2009).
Google Scholar
-
The Weaponized Word. Lexicons. Weaponized Word https://weaponizedword.org/lexicons (2024).
-
Robertson, C. E. et al. Negativity drives online news consumption. Nat. Hum. Behav. 7, 812–822 (2023).
Google Scholar
-
Boyd, R. L., Ashokkumar, A., Seraj, S. & Pennebaker, J. W. The Development and Psychometric Properties of LIWC-22 (Univ. of Texas at Austin, 2022).
-
Thelwall, M., Buckley, K. & Paltoglou, G. Sentiment strength detection for the social web. J. Am. Soc. Inf. Sci. Technol. 63, 163–173 (2011).
Google Scholar
-
Baccianella, S., Esuli, A. & Sebastiani, F. SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In Proc. Seventh International Conference on Language Resources and Evaluation (LREC’10) (eds. Calzolari, N., et al.) http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf (European Language Resources Association, 2010).
-
Hutto, C. & Gilbert, E. VADER: a parsimonious rule-based model for sentiment analysis of social media text. In Proc. Int. AAAI Conf. Web and Social Media 216–225 (AAAI, 2014).
-
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D. I. & Kappas, A. Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol 61, 2544–2558 (2010).
Google Scholar
-
Pröllochs, N., Feuerriegel, S. & Neumann, D. Statistical inferences for polarity identification in natural language. PLoS ONE 13, e0209323 (2018).
Google Scholar
-
Song, H. et al. In validations we trust? The impact of imperfect human annotations as a gold standard on the quality of validation of automated content analysis. Political Commun. 37, 550–572 (2020).
Google Scholar
-
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
Google Scholar
-
Hussain, Z., Mata, R. & Wulff, D. U. Novel embeddings improve the prediction of risk perception. EPJ Data Sci. 13, Article 38 (2024).
Google Scholar
-
Brown, T. et al. Language models are few-shot learners. In Advances in Neural Information Processing Systems (Larochelle, H. et al.) 1877–1901 (Curran Associates Inc., 2020).
-
Touvron, H. et al. Llama: open and efficient foundation language models. Preprint at https://doi.org/10.48550/arXiv.2302.13971 (2023).
-
Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (Guyon, I. et al.) 5998–6008 (2017).
-
Demszky, D. et al. Using large language models in psychology. Nat. Rev. Psychol. 2, 688–701 (2023).
-
Abdurahman, S. et al. Perils and opportunities in using large language models in psychological research. PNAS Nexus 3, 245 (2024).
Google Scholar
-
Kamalloo, E., Dziri, N., Clarke, C. & Rafiei, D. Evaluating open-domain question answering in the era of large language models. In Proc. Annual Meet. Assoc. Computational Linguistics (eds. Rogers, A. et al.) 5591–5606 (ACL, 2023).
-
Zhang, T. et al. Benchmarking large language models for news summarization. Trans. Assoc. Comput. Linguist. 12, 39–57 (2024).
Google Scholar
-
Zhu, W. et al. Multilingual machine translation with large language models: empirical results and analysis. In Findings of the ACL: North American Chapter of the Assoc. Computational Linguistics (eds. Duh, K. et al.) 2765–2781 (ACL, 2024).
-
Lin, Z. How to write effective prompts for large language models. Nat. Hum. Behav. 8, 611–615 (2024).
Google Scholar
-
Atreja, S., Ashkinaze, J., Li, L., Mendelsohn, J. & Hemphill, L. Prompt design matters for computational social science tasks but in unpredictable ways. Preprint at https://doi.org/10.48550/arXiv.2406.11980 (2024).
-
Kuribayashi, T., Oseki, Y. & Baldwin, T. Psychometric predictive power of large language models. In Findings of the ACL: North American Chapter of the Assoc. Computational Linguistics (eds. Duh, K. et al.) 1983–2005 (ACL, 2024).
-
Zhang, B., Liu, Z., Cherry, C. & Firat, O. When scaling meets LLM finetuning: the effect of data, model and finetuning method. In Proc. Int. Conf. Learn. Representations https://doi.org/10.48550/arXiv.2402.17193 (2024).
-
Wulff, D. U. & Mata, R. Semantic embeddings reveal and address taxonomic incommensurability in psychological measurement. Nat. Hum. Behav. https://doi.org/10.1038/s41562-024-02089-y (2025).
-
Dubey, A. et al. The llama 3 herd of models. Prerprint at https://doi.org/10.48550/arXiv.2407.21783 (2024).
-
Grimes, M., Krogh, Gvon, Feuerriegel, S., Rink, F. & Gruber, M. From scarcity to abundance: scholars and scholarship in an age of generative artificial intelligence. Acad. Manag. J. 66, 1617–1624 (2023).
Google Scholar
-
Shu, B. et al. You don’t need a personality test to know these models are unreliable: assessing the reliability of large language models on psychometric instruments. In Proc. Conf. North American Chapter of the Assoc. Computational Linguistics: Human Language Technologies (eds. Duh, K. et al.) 5263–5281 (ACL, 2024).
-
Hofmann, V., Kalluri, P. R., Jurafsky, D. & King, S. AI generates covertly racist decisions about people based on their dialect. Nature 633, 147–154 (2024).
Google Scholar
-
Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from language corpora contain human-like biases. Science 356, 183–186 (2017).
Google Scholar
-
Hartmann, J., Schwenzow, J. & Witte, M. The political ideology of conversational AI: converging evidence on ChatGPT’s pro-environmental, left-libertarian orientation. Preprint at https://doi.org/10.48550/arXiv.2301.01768 (2023).
-
Hu, T. et al. Generative language models exhibit social identity biases. Preprint at https://doi.org/10.48550/arXiv.2310.15819 (2023).
-
Balloccu, S., Schmidtová, P., Lango, M. & Dusek, O. Leak, cheat, repeat: data contamination and evaluation malpractices in closed-source LLMs. In Proc. Conf. European Chapter of the Assoc. Computational Linguistics (eds. Graham, Y. & Purver, M.) 67–93 (ACL, 2024).
-
Palmer, A., Smith, N. A. & Spirling, A. Using proprietary language models in academic research requires explicit justification. Nat. Comput. Sci. 4, 2–3 (2024).
Google Scholar
-
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. & Harshman, R. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990).
Google Scholar
-
Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).
-
Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. Int. Conf. Knowledge Discovery and Data Mining (eds. Simoudis, E. et al.) 226–231 (AAAI, 1996).
-
Grootendorst, M. BERTopic: neural topic modeling with a class-based TF-IDF procedure. Preprint at https://doi.org/10.48550/arXiv.2203.05794 (2022).
-
Jelinek, F., Mercer, R. L., Bahl, L. R. & Baker, J. K. Perplexity: a measure of the difficulty of speech recognition tasks. J. Acoust. Soc. Am. 62, S63 (1977).
Google Scholar
-
Campello, R. J., Moulavi, D. & Sander, J. Density-based clustering based on hierarchical density estimates. In Pacific-Asia Conf. Knowledge Discovery and Data Mining (eds. Pei, J. et al.) https://doi.org/10.1007/978-3-642-37456-2_14 (2013).
-
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
-
Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. & Blei, D. Reading tea leaves: how humans interpret topic models. In Adv. Neural Inf. Process. Syst. (eds. Bengio, Y. et al.) 288–296 (Curran Associates Inc., 2009).
-
Sievert, C. & Shirley, K. LDAvis: a method for visualizing and interpreting topics. In Proc. Workshop on Interactive Language Learning, Visualization, and Interfaces (eds. Chuang, J. et al.) 63–70 (ACL, 2014).
-
Kosar, A., Pauw, Gde & Daelemans, W. Comparative evaluation of topic detection: humans vs. LLMs. Comput. Linguist. Neth. J. 13, 91–120 (2024).
-
DiStefano, P. V., Patterson, J. D. & Beaty, R. E. Automatic scoring of metaphor creativity with large language models. Creativity Res. J. https://doi.org/10.1080/10400419.2024.2326343 (2023).
-
Yu, Y., Chen, L., Jiang, J. & Zhao, N. Measuring patent similarity with word embedding and statistical features. Data Anal. Knowl. Discov. 3, 53–59 (2019).
-
Kelly, B., Papanikolaou, D., Seru, A. & Taddy, M. Measuring technological innovation over the long run. Am. Econ. Rev. Insights 3, 303–320 (2021).
Google Scholar
-
Goldberg, A., Srivastava, S. B., Manian, V. G., Monroe, W. & Potts, C. Fitting in or standing out? The tradeoffs of structural and cultural embeddedness. Am. Sociol. Rev. 81, 1190–1222 (2016).
Google Scholar
-
Ireland, M. E. et al. Language style matching predicts relationship initiation and stability. Psychol. Sci. 22, 39–44 (2011).
Google Scholar
-
Niederhoffer, K. G. & Pennebaker, J. W. Linguistic style matching in social interaction. J. Lang. Soc. Psychol. 21, 337–360 (2002).
Google Scholar
-
Dhillon, I. S. & Modha, D. S. Concept decompositions for large sparse text data using clustering. Mach. Learn. 42, 143–175 (2001).
Google Scholar
-
Steck, H., Ekanadham, C. & Kallus, N. Is cosine-similarity of embeddings really about similarity? In Companion Proc. ACM Web Conf. (eds. Chua, T. et al.) 887–890 (ACM, 2024).
-
Lederer, W. & Küchenhoff, H. A short introduction to the SIMEX and MCSIMEX. Newsl. R. Proj. 6, 26–31 (2006).
-
Burton, J. W., Cruz, N. & Hahn, U. Reconsidering evidence of moral contagion in online social networks. Nat. Hum. Behav. 5, 1629–1635 (2021).
Google Scholar
-
Egami, N., Fong, C. J., Grimmer, J., Roberts, M. E. & Stewart, B. M. How to make causal inferences using texts. Sci. Adv. 8, eabg2652 (2022).
Google Scholar
-
Feder, A. et al. Causal inference in natural language processing: estimation, prediction, interpretation and beyond. Trans. Assoc. Comput. Linguist. 10, 1138–1158 (2022).
Google Scholar
-
Maarouf, A., Bär, D., Geissler, D. & Feuerriegel, S. HQP: a human-annotated dataset for detecting online propaganda. In Findings of the ACL (eds. Ku, L. et al.) 6064–6089 (ACL, 2024).
-
Berger, J. et al. Uniting the tribes: using text for marketing insight. J. Mark. 84, 1–25 (2020).
Google Scholar
-
Mohammad, S. M. Ethics sheet for automatic emotion recognition and sentiment analysis. Comput. Linguist. 48, 239–278 (2022).
Google Scholar
-
Rivers, C. M. & Lewis, B. L. Ethical research standards in a world of big data. F1000Research 3, 38 (2014).
Google Scholar
-
Boegershausen, J., Datta, H., Borah, A. & Stephen, A. T. Fields of gold: scraping web data for marketing insights. J. Mark. 86, 1–20 (2022).
Google Scholar
-
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 1–35 (2021).
Google Scholar
-
Zhao, J., Wang, T., Yatskar, M., Ordonez, V. & Chang, K.-W. Men also like shopping: reducing gender bias amplification using corpus-level constraints. In Proc. Conf. Empirical Methods in Natural Language Processing (eds. Palmer, M. et al.) 2989–2989 (ACL, 2017).
-
Hackenburg, K. & Margetts, H. Evaluating the persuasive influence of political microtargeting with large language models. Proc. Natl Acad. Sci. USA 121, e2403116121 (2024).
Google Scholar
-
Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C. & Althoff, T. Human–AI collaboration enables more empathic conversations in text-based peer-to-peer mental health support. Nat. Mach. Intell. 5, 46–57 (2023).
Google Scholar
-
Colleoni, E., Rozza, A. & Arvidsson, A. Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. J. Commun. 64, 317–332 (2014).
Google Scholar
-
Wojcik, S. P., Hovasapian, A., Graham, J., Motyl, M. & Ditto, P. H. Conservatives report, but liberals display, greater happiness. Science 347, 1243–1246 (2015).
Google Scholar
-
Frimer, J. A., Brandt, M. J., Melton, Z. & Motyl, M. Extremists on the left and right use angry, negative language. Pers. Soc. Psychol. Bull. 45, 1216–1231 (2019).
Google Scholar
-
Sterling, J., Jost, J. T. & Bonneau, R. Political psycholinguistics: a comprehensive analysis of the language habits of liberal and conservative social media users. J. Pers. Soc. Psychol. 118, 805–834 (2020).
Google Scholar
-
Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A. & van Bavel, J. J. Emotion shapes the diffusion of moralized content in social networks. Proc. Natl Acad. Sci. USA 114, 7313–7318 (2017).
Google Scholar
-
Brady, W. J., Wills, J. A., Burkart, D., Jost, J. T. & van Bavel, J. J. An ideological asymmetry in the diffusion of moralized content on social media among political leaders. J. Exp. Psychol.: Gen. 148, 1802–1813 (2019).
Google Scholar
-
Lanning, K., Pauletti, R. E., King, L. A. & McAdams, D. P. Personality development through natural language. Nat. Hum. Behav. 2, 327–334 (2018).
Google Scholar
-
Slatcher, R. B., Chung, C. K., Pennebaker, J. W. & Stone, L. D. Winning words: individual differences in linguistic style among US presidential and vice presidential candidates. J. Res. Pers. 41, 63–75 (2007).
Google Scholar
-
Wiechmann, P., Lora, K., Branscum, P. & Fu, J. Identifying discriminative attributes to gain insights regarding child obesity inHispanic preschoolers using machine learning techniques. In Proc. IEEE Int. Conf. Tools with Artificial Intelligence, 11–15 (IEEE, 2017).
-
Teague, S. J. & Shatte, A. B. R. Exploring the transition to fatherhood: feasibility study using social media and machine learning. JMIR Pediatrics Parent. 1, e12371 (2018).
Google Scholar
-
Joel, S., Eastwick, P. W. & Finkel, E. J. Is romantic desire predictable? Machine learning applied to initial romantic attraction. Psychol. Sci. 28, 1478–1489 (2017).
Google Scholar
-
Lasser, J. et al. From alternative conceptions of honesty to alternative facts in communications by US politicians. Nat. Hum. Behav. 7, 2140–2151 (2023).
Google Scholar
-
Frimer, J. A. et al. Incivility is rising among American politicians on Twitter. Soc. Psychol. Pers. Sci. 14, 259–269 (2023).
Google Scholar
-
Shulman, H. C., Markowitz, D. M. & Rogers, T. Reading dies in complexity: online news consumers prefer simple writing. Sci. Adv. 10, eadn2555 (2024).
Google Scholar
-
Newman, M. L., Pennebaker, J. W., Berry, D. S. & Richards, J. M. Lying words: predicting deception from linguistic styles. Pers. Soc. Psychol. Bull. 29, 665–675 (2003).
Google Scholar
-
Zhou, L., Burgoon, J. K., Nunamaker, J. F. & Twitchell, D. Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group. Decis. Negotiation 13, 81–106 (2004).
Google Scholar
-
Ho, S. M., Hancock, J. T., Booth, C. & Liu, X. Computer-mediated deception: strategies revealed by language–action cues in spontaneous communication. J. Manag. Inf. Syst. 33, 393–420 (2016).
Google Scholar
-
Siering, M., Koch, J.-A. & Deokar, A. V. Detecting fraudulent behavior on crowdfunding platforms: the role of linguistic and content-based cues in static and dynamic contexts. J. Manag. Inf. Syst. 33, 421–455 (2016).
Google Scholar
-
Zhang, D., Zhou, L., Kehoe, J. L. & Kilic, I. Y. What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews. J. Manag. Inf. Syst. 33, 456–481 (2016).
Google Scholar
-
Constâncio, A. S., Tsunoda, D. F., Silva, H. F. N., Da Silveira, J. M. & Carvalho, D. R. Deception detection with machine learning: a systematic review and statistical analysis. PLoS ONE 18, e0281323 (2023).
Google Scholar
-
Thompson, B., Roberts, S. G. & Lupyan, G. Cultural influences on word meanings revealed through large-scale semantic alignment. Nat. Hum. Behav. 4, 1029–1038 (2020).
Google Scholar
-
Morin, O. & Acerbi, A. Birth of the cool: a two-centuries decline in emotional expression in Anglophone fiction. Cogn. Emot. 31, 1663–1675 (2017).
Google Scholar
-
Jackson, J. C., Gelfand, M., De, S. & Fox, A. The loosening of American culture over 200 years is associated with a creativity‐order trade-off. Nat. Hum. Behav. 3, 244–250 (2019).
Google Scholar
-
Charlesworth, T. E. S. & Banaji, M. R. Patterns of implicit and explicit attitudes: I. Long-term change and stability from 2007 to 2016. Psychol. Sci. 30, 174–192 (2019).
Google Scholar
-
Charlesworth, T. E. S., Caliskan, A. & Banaji, M. R. Historical representations of social groups across 200 years of word embeddings from Google Books. Proc. Natl Acad. Sci. USA 119, e2121798119 (2022).
Google Scholar
-
Simchon, A., Brady, W. J. & van Bavel, J. J. Troll and divide: the language of online polarization. PNAS Nexus 1, pgac019 (2022).
Google Scholar
-
Pröllochs, N., Bär, D. & Feuerriegel, S. Emotions explain differences in the diffusion of true vs. false social media rumors. Sci. Rep. 11, 22721 (2021).
Google Scholar
-
Pröllochs, N., Bär, D. & Feuerriegel, S. Emotions in online rumor diffusion. EPJ Data Sci. 10, 51 (2021).
Google Scholar
-
Yin, D., Bond, S. D. & Zhang, H. Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews. MIS Q. 38, 539–560 (2014).
Google Scholar
-
Chung, J., Johar, G. V., Li, Y., Netzer, O. & Pearson, M. Mining consumer minds: downstream consequences of host motivations for home-sharing platforms. J. Consum. Res. 48, 817–838 (2022).
Google Scholar
-
Park, G. et al. Automatic personality assessment through social media language. J. Pers. Soc. Psychol. 108, 934–952 (2015).
Google Scholar
-
O’Dea, B. et al. The relationship between linguistic expression in blog content and symptoms of depression, anxiety, and suicidal thoughts: a longitudinal study. PLoS ONE 16, e0251787 (2021).
Google Scholar
-
Preotiuc-Pietro, D. et al. The role of personality, age, and gender in tweeting about mental illness. In Proc. 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality 21–30 (ACL, 2015).
-
Cohn, M. A., Mehl, M. R. & Pennebaker, J. W. Linguistic markers of psychological change surrounding September 11, 2001. Psychol. Sci. 15, 687–693 (2004).
Google Scholar
-
Garcia, D. & Rimé, B. Collective emotions and social resilience in the digital traces after a terrorist attack. Psychol. Sci. 30, 617–628 (2019).
Google Scholar
-
Ashokkumar, A. & Pennebaker, J. W. Social media conversations reveal large psychological shifts caused by COVID-19’s onset across US cities. Sci. Adv. 7, eabg7843 (2021).
Google Scholar
-
Di Kramer, A., Guillory, J. E. & Hancock, J. T. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl Acad. Sci. USA 111, 8788–8790 (2014).
Google Scholar
-
Kacewicz, E., Pennebaker, J. W., Davis, M., Jeon, M. & Graesser, A. C. Pronoun use reflects standings in social hierarchies. J. Lang. Soc. Psychol. 33, 125–143 (2014).
Google Scholar
-
Rude, S., Gortner, E.-M. & Pennebaker, J. Language use of depressed and depression-vulnerable college students. Cogn. Emot. 18, 1121–1133 (2004).
Google Scholar
-
Netzer, O., Feldman, R., Goldenberg, J. & Fresko, M. Mine your own business: market-structure surveillance through text mining. Mark. Sci. 31, 521–543 (2012).
Google Scholar
-
Seraj, S., Blackburn, K. G. & Pennebaker, J. W. Language left behind on social media exposes the emotional and cognitive costs of a romantic breakup. Proc. Natl Acad. Sci. USA 118, e2017154118 (2021).
Google Scholar
-
Berger, J. & Milkman, K. L. What makes online content viral? J. Mark. Res. 49, 192–205 (2012).
Google Scholar
-
Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M. & Duncan, J. W. Predicting consumer behavior with web search. Proc. Natl Acad. Sci. USA 107, 17486–17490 (2010).
Google Scholar
-
Scheffer, M., van de Leemput, I., Weinans, E. & Bollen, J. The rise and fall of rationality in language. Proc. Natl Acad. Sci. USA 118, e2107848118 (2021).
Google Scholar
-
Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A. The rise of social bots. Commun. ACM 59, 96–104 (2016).
Google Scholar
-
Auxier, B. & Anderson, M. Social Media Use in 2021 (Pew Research Center, 2021).
-
Barberá, P. & Rivero, G. Understanding the political representativeness of Twitter users. Soc. Sci. Comput. Rev. 33, 712–729 (2015).
Google Scholar
-
Schoenmueller, V., Netzer, O. & Stahl, F. The polarity of online reviews: prevalence, drivers and implications. J. Mark. Res. 57, 853–877 (2020).
Google Scholar
-
Robertson, C. E., Del Rosario, K., Rathje, S. & van Bavel, J. J. Changing the incentive structure of social media may reduce online proxy failure and proliferation of negativity. Behav. Brain Sci. 47, e81 (2024).
Google Scholar
-
Robertson, C., Del Rosario, K. & van Bavel, J. J. Inside the Funhouse Mirror Factory: How Social Media Distorts Perceptions of Norms (OSF, 2024).
-
Bär, D., Pröllochs, N. & Feuerriegel, S. New threats to society from free-speech social media platforms. Commun. ACM 66, 37–40 (2023).
Google Scholar
-
Zhunis, A., Lima, G., Song, H., Han, J. & Cha, M. Emotion bubbles: emotional composition of online discourse before and after the COVID-19 outbreak. In Proc. ACM Web Conf. (eds. Faforest, F. et al.) 2603–2613 (ACM, 2022).
-
Rathje, S., He, J. K., Roozenbeek, J., van Bavel, J. J. & van der Linden, S. Social media behavior is associated with vaccine hesitancy. PNAS Nexus 1, pgac207 (2022).
Google Scholar
-
Canché, M. S. G. Machine driven classification of open-ended responses (MDCOR): an analytic framework and no-code, free software application to classify longitudinal and cross-sectional text responses in survey and social media research. Expert. Syst. Appl. 215, 119265 (2023).
Google Scholar
-
Hartmann, J., Bergner, A. & Hildebrand, C. MindMiner: uncovering linguistic markers of mind perception as a new lens to understand consumer‐smart object relationships. J. Consum. Psychol. 33, 645–667 (2023).
Google Scholar
Author information
Authors and Affiliations
Contributions
S.F., A.M., D.B., D.G., J.S. and N.P. outlined the article and wrote the first draft. A.M. created the first draft of the figures. All authors contributed to subsequent iterations of the article. All authors reviewed, edited and approved the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks April Bailey, Morteza Dehghani and Dirk Wulff for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Feuerriegel, S., Maarouf, A., Bär, D. et al. Using natural language processing to analyse text data in behavioural science.
Nat Rev Psychol (2025). https://doi.org/10.1038/s44159-024-00392-z
-
Accepted: 22 November 2024
-
Published: 02 January 2025
-
DOI: https://doi.org/10.1038/s44159-024-00392-z