Abstract
Age is one of the most fundamental parameters of a star, yet it is one of the hardest to determine as it requires modelling various aspects of stellar formation and evolution. When we compare the ages derived from isochronal and dynamical traceback methods for six young stellar associations, we find a systematic discrepancy. Specifically, dynamical traceback ages are consistently younger by an average of 〈ΔAge〉 = 5.5 ± 1.1 Myr. We rule out measurement errors as the cause of the age mismatch and propose that ΔAge indicates the time a young star remains bound to its parental cloud before moving away from its siblings. In this framework, the dynamical traceback ‘clock’ starts when a stellar cluster or association begins to expand after expelling most of the gas, whereas the isochronal ‘clock’ starts earlier when most stars form. The difference between these two age-dating techniques is a powerful tool for constraining evolutionary models, as isochronal ages cannot be younger than dynamical traceback ages. Measuring the ΔAge accurately and understanding its variations across different environments will provide further information on the impact of local conditions and stellar feedback on the formation and dispersal of stellar clusters.
This is a preview of subscription content, access via your institution
Access options
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
Data availability
The data that support the findings of this study are available in Table 1.
References
-
Drązkowska, J. et al. Planet formation theory in the era of ALMA and Kepler: from pebbles to exoplanets. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 534 (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) 717 (ASP, 2023).
-
Manara, C. F. et al. Demographics of young stars and their protoplanetary disks: lessons learned on disk evolution and its connection to planet formation. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 534 (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) 539 (ASP, 2023).
-
Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011).
Google Scholar
-
Miret-Roig, N. The origin of free-floating planets. Astrophys. Space Sci. 368, 17 (2023).
Google Scholar
-
Zucker, C., Alves, J., Goodman, A., Meingast, S. & Galli, P. The solar neighborhood in the age of Gaia. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 534 (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) 43 (ASP, 2023).
-
Mermilliod, J. C. Relative and absolute ages of open clusters. In Proc. Astronomical Society of the Pacific Conference Series, Vol. 198 (eds Pallavicini, R., Micela, G. & Sciortino, S.) 105 (ASP, 2000).
-
Soderblom, D. R. The ages of stars. Annu. Rev. Astron. Astrophys. 48, 581–629 (2010).
Google Scholar
-
Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., Mamajek, E. E. & Naylor, T. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 219–241 (Univ. Arizona Press, 2014).
-
Barrado, D. Clusters: age scales for stellar physics. EAS Publ. Ser. 80-81, 115–175 (2016).
Google Scholar
-
Gaia Collaboration et al. Gaia Data Release 3: summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).
-
Bossini, D. et al. Age determination for 269 Gaia DR2 open clusters. Astron. Astrophys. 623, A108 (2019).
Google Scholar
-
Cantat-Gaudin, T. et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 640, A1 (2020).
Google Scholar
-
Dias, W. S. et al. Updated parameters of 1743 open clusters based on Gaia DR2. Mon. Not. R. Astron. Soc. 504, 356–371 (2021).
Google Scholar
-
Li, L. & Shao, Z. MiMO: mixture model for open clusters in color–magnitude diagrams. Astrophys. J. 930, 44 (2022).
Google Scholar
-
Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages. Astron. Astrophys. 382, 563–572 (2002).
Google Scholar
-
Luhman, K. L. The formation and early evolution of low-mass stars and brown dwarfs. Annu. Rev. Astron. Astrophys. 50, 65–106 (2012).
Google Scholar
-
Allard, F. The BT-Settl model atmospheres for stars, brown dwarfs and planets. Proc. Int. Astron. Union 8, 271–272 (2013).
Google Scholar
-
Jeffries, R. D. et al. The Gaia-ESO survey: kinematic structure in the Gamma Velorum cluster. Astron. Astrophys. 563, A94 (2014).
Google Scholar
-
Jeffries, R. D., Jackson, R. J., Sun, Q. & Deliyannis, C. P. The effects of rotation on the lithium depletion of G- and K-dwarfs in Messier 35. Mon. Not. R. Astron. Soc. 500, 1158–1177 (2021).
Google Scholar
-
Binks, A. S. et al. The Gaia-ESO survey: constraining evolutionary models and ages for young low mass stars with measurements of lithium depletion and rotation. Mon. Not. R. Astron. Soc. 513, 5727–5751 (2022).
Google Scholar
-
Basri, G., Marcy, G. W. & Graham, J. R. Lithium in brown dwarf candidates: the mass and age of the faintest Pleiades stars. Astrophys. J. 458, 600 (1996).
Google Scholar
-
Stauffer, J. R., Schultz, G. & Kirkpatrick, J. D. Keck spectra of Pleiades brown dwarf candidates and a precise determination of the lithium depletion edge in the Pleiades. Astrophys. J. Lett. 499, L199–L203 (1998).
Google Scholar
-
Barrado y Navascués, D., Stauffer, J. R. & Patten, B. M. The lithium-depletion boundary and the age of the young open cluster IC 2391. Astrophys. J. Lett. 522, L53–L56 (1999).
Google Scholar
-
Manzi, S., Randich, S., de Wit, W. J. & Palla, F. Detection of the lithium depletion boundary in the young open cluster IC 4665. Astron. Astrophys. 479, 141–148 (2008).
Google Scholar
-
Binks, A. S. & Jeffries, R. D. A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group. Mon. Not. R. Astron. Soc. 438, L11–L15 (2014).
Google Scholar
-
Binks, A. S. et al. The Gaia-ESO survey: a lithium depletion boundary age for NGC 2232. Mon. Not. R. Astron. Soc. 505, 1280–1292 (2021).
Google Scholar
-
Galindo-Guil, F. J. et al. Lithium depletion boundary, stellar associations, and Gaia. Astron. Astrophys. 664, A70 (2022).
Google Scholar
-
Blaauw, A. The O associations in the solar neighborhood. Annu. Rev. Astron. Astrophys. 2, 213 (1964).
Google Scholar
-
Miret-Roig, N. et al. Dynamical traceback age of the β Pictoris moving group. Astron. Astrophys. 642, A179 (2020).
Google Scholar
-
Brown, A. G. A., Dekker, G. & de Zeeuw, P. T. Kinematic ages of OB associations. Mon. Not. R. Astron. Soc. 285, 479–492 (1997).
Google Scholar
-
Ortega, V. G., de la Reza, R., Jilinski, E. & Bazzanella, B. The origin of the β Pictoris moving group. Astrophys. J. Lett. 575, L75–L78 (2002).
Google Scholar
-
de la Reza, R., Jilinski, E. & Ortega, V. G. Dynamical evolution of the TW Hydrae association. Astron. J. 131, 2609–2614 (2006).
Google Scholar
-
Ducourant, C. et al. The TW Hydrae association: trigonometric parallaxes and kinematic analysis. Astron. Astrophys. 563, A121 (2014).
Google Scholar
-
Miret-Roig, N., Antoja, T., Romero-Gómez, M. & Figueras, F. Dynamical ages of the young local associations with Gaia. Astron. Astrophys. 615, A51 (2018).
Google Scholar
-
Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).
Google Scholar
-
Miret-Roig, N. et al. The star formation history of upper Scorpius and Ophiuchus. A 7D picture: positions, kinematics, and dynamical traceback ages. Astron. Astrophys. 667, A163 (2022).
Google Scholar
-
Squicciarini, V., Gratton, R., Bonavita, M. & Mesa, D. Unveiling the star formation history of the upper Scorpius association through its kinematics. Mon. Not. R. Astron. Soc. 507, 1381–1400 (2021).
Google Scholar
-
Kerr, R. et al. SPYGLASS. III. The Fornax–Horologium association and its traceback history within the Austral complex. Astrophys. J. 941, 143 (2022).
Google Scholar
-
Kerr, R. et al. SPYGLASS. II. The multigenerational and multiorigin star formation history of Cepheus far north. Astrophys. J. 941, 49 (2022).
Google Scholar
-
Galli, P. A. B., Miret-Roig, N., Bouy, H., Olivares, J. & Barrado, D. Dynamical age of the Tucana-Horologium young stellar association. Mon. Not. R. Astron. Soc. 520, 6245–6255 (2023).
Google Scholar
-
Couture, D., Gagné, J. & Doyon, R. Addressing systematics in the traceback age of the β Pictoris moving group. Astrophys. J. https://doi.org/10.3847/1538-4357/acb4eb (2023).
-
Quintana, A. L., Wright, N. J. & Jeffries, R. D. Mapping the distribution of OB stars and associations in Auriga. Mon. Not. R. Astron. Soc. 522, 3124–3137 (2023).
Google Scholar
-
Stahler, S. W. The birthline for low-mass stars. Astrophys. J. 274, 822–829 (1983).
Google Scholar
-
Palla, F. & Stahler, S. W. Star formation in the Orion nebula cluster. Astrophys. J. 525, 772–783 (1999).
Google Scholar
-
Wuchterl, G. & Tscharnuter, W. M. From clouds to stars. Protostellar collapse and the evolution to the pre-main sequence I. Equations and evolution in the Hertzsprung–Russell diagram. Astron. Astrophys. 398, 1081–1090 (2003).
Google Scholar
-
Preibisch, T. The reliability of age measurements for young stellar objects from Hertzsprung–Russell or color–magnitude diagrams. Res. Astron. Astrophys. 12, 1–25 (2012).
Google Scholar
-
Kudryavtseva, N. et al. Instantaneous starburst of the massive clusters Westerlund 1 and NGC 3603 YC. Astrophys. J. Lett. 750, L44 (2012).
Google Scholar
-
Ratzenböck, S. et al. The star formation history of the Sco-Cen association: coherent star formation patterns in space and time. Astron. Astrophys. 678, A71 (2023).
-
Krumholz, M. R., McKee, C. F. & Bland-Hawthorn, J. Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019).
Google Scholar
-
Kuhn, M. A., Hillenbrand, L. A., Sills, A., Feigelson, E. D. & Getman, K. V. Kinematics in young star clusters and associations with Gaia DR2. Astrophys. J. 870, 32 (2019).
Google Scholar
-
Kruijssen, J. M. D. et al. Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature 569, 519–522 (2019).
Google Scholar
-
Chevance, M. et al. The lifecycle of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 493, 2872–2909 (2020).
Google Scholar
-
Demachi, F. et al. GMCs and their type classification in M74: toward understanding star formation and cloud evolution. Preprint at arXiv.org/abs/2305.19192 (2023).
-
Dobbs, C. L., Bending, T. J. R., Pettitt, A. R., Buckner, A. S. M. & Bate, M. R. The formation of clusters and OB associations in different density spiral arm environments. Mon. Not. R. Astron. Soc. 517, 675–696 (2022).
Google Scholar
-
Guszejnov, D. et al. Effects of the environment and feedback physics on the initial mass function of stars in the STARFORGE simulations. Mon. Not. R. Astron. Soc. 515, 4929–4952 (2022).
Google Scholar
-
Jeffreson, S. M. R., Semenov, V. A. & Krumholz, M. R. Clouds of Theseus: long-lived molecular clouds are composed of short-lived H2 molecules. Preprint at arXiv.org/abs/2301.10251 (2023).
-
Chevance, M. et al. Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 509, 272–288 (2022).
Google Scholar
-
Dinnbier, F. & Walch, S. How fast do young star clusters expel their natal gas? Estimating the upper limit of the gas expulsion time-scale. Mon. Not. R. Astron. Soc. 499, 748–767 (2020).
Google Scholar
-
Goodwin, S. P. & Bastian, N. Gas expulsion and the destruction of massive young clusters. Mon. Not. R. Astron. Soc. 373, 752–758 (2006).
Google Scholar
-
Krause, M. G. H., Charbonnel, C., Bastian, N. & Diehl, R. Gas expulsion in massive star clusters? Constraints from observations of young and gas-free objects. Astron. Astrophys. 587, A53 (2016).
Google Scholar
-
Dinnbier, F. & Kroupa, P. Tidal tails of open star clusters as probes of early gas expulsion. I. A semi-analytic model. Astron. Astrophys. 640, A84 (2020).
Google Scholar
-
Dinnbier, F. & Kroupa, P. Tidal tails of open star clusters as probes to early gas expulsion. II. Predictions for Gaia. Astron. Astrophys. 640, A85 (2020).
Google Scholar
-
Kerr, R. M. P., Rizzuto, A. C., Kraus, A. L. & Offner, S. S. R. Stars with photometrically young Gaia luminosities around the Solar System (SPYGLASS). I. Mapping young stellar structures and their star formation histories. Astrophys. J. 917, 23 (2021).
Google Scholar
-
Prisinzano, L. et al. Low-mass young stars in the Milky Way unveiled by DBSCAN and Gaia EDR3: mapping the star forming regions within 1.5 kpc. Astron. Astrophys. 664, A175 (2022).
Google Scholar
-
Dalton, G. et al. Final design and progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope. In Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908 (eds Evans, C. J., Simard, L. & Takami, H.) 99081G (SPIE, 2016).
-
de Jong, R. S. et al. 4MOST: project overview and information for the first call for proposals. Messenger 175, 3–11 (2019).
Google Scholar
-
Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).
Google Scholar
-
Preibisch, T., Brown, A. G. A., Bridges, T., Guenther, E. & Zinnecker, H. Exploring the full stellar population of the upper Scorpius OB association. Astron. J. 124, 404–416 (2002).
Google Scholar
-
David, T. J. et al. Age determination in upper Scorpius with eclipsing binaries. Astrophys. J. 872, 161 (2019).
Google Scholar
-
Pecaut, M. J., Mamajek, E. E. & Bubar, E. J. A revised age for upper Scorpius and the star formation history among the F-type members of the Scorpius-Centaurus OB association. Astrophys. J. 746, 154 (2012).
Google Scholar
-
Rizzuto, A. C., Ireland, M. J., Dupuy, T. J. & Kraus, A. L. Dynamical masses of young stars. I. Discordant model ages of upper Scorpius. Astrophys. J. 817, 164 (2016).
Google Scholar
-
Feiden, G. A. Magnetic inhibition of convection and the fundamental properties of low-mass stars. III. A consistent 10 Myr age for the upper Scorpius OB association. Astron. Astrophys. 593, A99 (2016).
Google Scholar
-
Ratzenböck, s. et al. Significance mode analysis (SigMA) for hierarchical structures. An application to the Sco-Cen OB association. Astron. Astrophys. 677, A59 (2023).
Google Scholar
-
Briceño-Morales, G. & Chanamé, J. Substructure, supernovae, and a time-resolved star formation history for upper Scorpius. Mon. Not. R. Astron. Soc. 522, 1288–1309 (2023).
Google Scholar
-
Barrado y Navascués, D., Stauffer, J. R., Song, I. & Caillault, J.-P. The age of β Pictoris. Astrophys. J. Lett. 520, L123–L126 (1999).
Google Scholar
-
Malo, L. et al. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models. Astrophys. J. 792, 37 (2014).
Google Scholar
-
Mamajek, E. E. & Bell, C. P. M. On the age of the β Pictoris moving group. Mon. Not. R. Astron. Soc. 445, 2169–2180 (2014).
Google Scholar
-
Bell, C. P. M., Mamajek, E. E. & Naylor, T. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood. Mon. Not. R. Astron. Soc. 454, 593–614 (2015).
Google Scholar
-
Ujjwal, K., Kartha, S. S., Mathew, B., Manoj, P. & Narang, M. Analysis of membership probability in nearby young moving groups with Gaia DR2. Astron. J. 159, 166 (2020).
Google Scholar
-
Crundall, T. D. et al. Chronostar: a novel Bayesian method for kinematic age determination – I. Derivation and application to the β Pictoris moving group. Mon. Not. R. Astron. Soc. 489, 3625–3642 (2019).
Google Scholar
-
Mentuch, E., Brandeker, A., van Kerkwijk, M. H., Jayawardhana, R. & Hauschildt, P. H. Lithium depletion of nearby young stellar associations. Astrophys. J. 689, 1127–1140 (2008).
Google Scholar
-
Messina, S. et al. The rotation-lithium depletion correlation in the β Pictoris association and the LDB age determination. Astron. Astrophys. 596, A29 (2016).
Google Scholar
-
Torres, C. A. O., da Silva, L., Quast, G. R., de la Reza, R. & Jilinski, E. A new association of post-T Tauri stars near the Sun. Astron. J. 120, 1410–1425 (2000).
Google Scholar
-
Kraus, A. L., Shkolnik, E. L., Allers, K. N. & Liu, M. C. A stellar census of the Tucana-Horologium moving group. Astron. J. 147, 146 (2014).
Google Scholar
-
Bovy, J. galpy: A Python library for Galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).
Google Scholar
-
Jackson, R. J. & Jeffries, R. D. On the relationship between the size and surface coverage of starspots on magnetically active low-mass stars. Mon. Not. R. Astron. Soc. 431, 1883–1890 (2013).
Google Scholar
-
Somers, G. & Pinsonneault, M. H. A tale of two anomalies: depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence. Astrophys. J. 790, 72 (2014).
Google Scholar
-
Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).
Google Scholar
Acknowledgements
D.B. is supported by Spanish MCIN/AEI/10.13039/501100011033 Grant nos. PID2019-107061GB-C61 and MDM-2017-0737. S.R. acknowledges funding from the Austrian Research Promotion Agency (https://www.ffg.at/) under project no. FO999892674.
Author information
Authors and Affiliations
Contributions
N.M.-R. led the analysis and wrote the manuscript. S.R. computed the isochrone-fitting ages reported in this study and did the Bayesian modelling in Fig. 3. All authors participated in the scientific discussion.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Mariangela Bonavita, Alexander Binks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2 and Table 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
About this article
Cite this article
Miret-Roig, N., Alves, J., Barrado, D. et al. Insights into star formation and dispersal from the synchronization of stellar clocks.
Nat Astron (2023). https://doi.org/10.1038/s41550-023-02132-4
-
Received: 05 June 2023
-
Accepted: 16 October 2023
-
Published: 23 November 2023
-
DOI: https://doi.org/10.1038/s41550-023-02132-4