Abstract
Efficient utilization of massively parallel computing resources is crucial for advancing scientific understanding through complex simulations. However, existing adaptive methods often face challenges in implementation complexity and scalability on modern parallel hardware. Here we present dynamic block activation (DBA), an acceleration framework that can be applied to a broad range of continuum simulations by strategically allocating resources on the basis of the dynamic features of the physical model. By exploiting the hierarchical structure of parallel hardware and dynamically activating and deactivating computation blocks, DBA optimizes performance while maintaining accuracy. We demonstrate DBA’s effectiveness through solving representative models spanning multiple scientific fields, including materials science, biophysics and fluid dynamics, achieving 216–816 central processing unit core-equivalent speedups on a single graphics processing unit (GPU), up to fivefold acceleration compared with highly optimized GPU code and nearly perfect scalability up to 32 GPUs. By addressing common challenges, such as divergent memory access, and reducing programming burden, DBA offers a promising approach to fully leverage massively parallel systems across multiple scientific computing domains.
This is a preview of subscription content, access via your institution
Access options
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */





Data availability
All of the experiments in this Resource are based on simulations, and there are no input data. Source data are provided with this paper.
Code availability
The code that supports the results within this Resource is available via GitHub at https://github.com/zhangruoyao68/DBA and via Zenodo at https://doi.org/10.5281/zenodo.14868458 (ref. 66).
References
-
Kirk, D. B. & Hwu, W.-M. W. Programming Massively Parallel Processors 3rd edn (Morgan Kaufmann, 2016).
Google Scholar
-
Wang, Q., Ihme, M., Chen, Y.-F. & Anderson, J. A TensorFlow simulation framework for scientific computing of fluid flows on tensor processing units. Comput. Phys. Commun. 274, 108292 (2022).
Google Scholar
-
Castro, M. D., Vilariño, D. L., Torres, Y. & Llanos, D. R. The role of field-programmable gate arrays in the acceleration of modern high-performance computing workloads. Computer 57, 66–76 (2024).
Google Scholar
-
Steinkraus, D., Buck, I. & Simard, P. Y. Using GPUs for machine learning algorithms. In Eighth International Conference on Document Analysis and Recognition (ICDAR’05) 2, 1115–1120 (IEEE, 2005).
-
Fung. J. Computer vision on the GPU. In GPU Gems 2: Programming Techniques for High-Performance Graphics and General Purpose Computation 1st edn (eds Pharr, M. et al.) Chap. 40 (Addison-Wesley, 2005.)
-
Götz, A. W., Wölfle, T. & Walker, R. C. Quantum chemistry on graphics processing units. In Annual Reports in Computational Chemistry Vol. 6 (ed Wheeler, R. A.) Chap. 2 (Elsevier, 2010).
-
Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: A python package for high-performance molecular dynamics and hard particle monte carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).
Google Scholar
-
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
Google Scholar
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Google Scholar
-
Niemeyer, K. E. & Sung, C.-J. Recent progress and challenges in exploiting graphics processors in computational fluid dynamics. J. Supercomput. 67, 528–564 (2014).
Google Scholar
-
Michalakes, J. & Vachharajani, M. GPU acceleration of numerical weather prediction. In Proc. IEEE International Symposium on Parallel and Distributed Processing 1–7 (IEEE, 2008).
-
Eklund, A., Dufort, P., Forsberg, D. & LaConte, S. M. Medical image processing on the GPU—past, present and future. Med. Image Anal. 17, 1073–1094 (2013).
Google Scholar
-
Berger, M. J. & Oliger, J. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984).
Google Scholar
-
Berger, M. J. & Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989).
Google Scholar
-
Teunissen, J. & Ebert, U. Afivo: a framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods. Comput. Phys. Commun. 233, 156–166 (2018).
Google Scholar
-
Rollier, M., Zielinski, K. M. C., Daly, A. J., Bruno, O. M. & Baetens, J. M. A comprehensive taxonomy of cellular automata. Commun. Nonlinear Sci. Numer. Simul. 140, 108362 (2025).
Google Scholar
-
Provatas, N., Goldenfeld, N. & Dantzig, J. Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Comput. Phys. 148, 265–290 (1999).
Google Scholar
-
Gaston, D., Newman, C., Hansen, G. & Lebrun-Grandié, D. MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768–1778 (2009).
Google Scholar
-
Greenwood, M. et al. Quantitative 3D phase field modelling of solidification using next-generation adaptive mesh refinement. Comput. Mater. Sci. 142, 153–171 (2018).
Google Scholar
-
DeWitt, S., Rudraraju, S., Montiel, D., Andrews, W. B. & Thornton, K. PRISMS-PF: a general framework for phase-field modeling with a matrix-free finite element method. npj Comput. Mater. 6, 29 (2020).
Google Scholar
-
Popinet, S. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 5838–5866 (2009).
Google Scholar
-
Zhang, W. et al. AMReX: a framework for block-structured adaptive mesh refinement. J. Open Source Softw. 4, 1370 (2019).
Google Scholar
-
Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement—a new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).
Google Scholar
-
Bryan, G. L. et al. ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211, 19 (2014).
Google Scholar
-
Stone, J. M., Tomida, K., White, C. J. & Felker, K. G. The Athena++ adaptive mesh refinement framework: design and magnetohydrodynamic solvers. Astrophys. J. Suppl. Ser. 249, 4 (2020).
-
Zhang, W., Myers, A., Gott, K., Almgren, A. & Bell, J. AMReX: block-structured adaptive mesh refinement for multiphysics applications. Int. J. High Perform. Comput. Appl. 35, 508–526 (2021).
Google Scholar
-
Schive, H.-Y. et al. gamer-2: a GPU-accelerated adaptive mesh refinement code—accuracy, performance, and scalability. Mon. Not. R. Astron. Soc. 481, 4815–4840 (2018).
Google Scholar
-
Wang, P., Abel, T. & Kaehler, R. Adaptive mesh fluid simulations on GPU. New Astron. 15, 581–589 (2010).
Google Scholar
-
Giuliani, A. & Krivodonova, L. Adaptive mesh refinement on graphics processing units for applications in gas dynamics. J. Comput. Phys. 381, 67–90 (2019).
Google Scholar
-
Liu, Z., Tian, F.-B. & Feng, X. An efficient geometry-adaptive mesh refinement framework and its application in the immersed boundary lattice Boltzmann method. Comput. Methods Appl. Mech. Eng. 392, 114662 (2022).
Google Scholar
-
Farooqi, M. N. et al. Asynchronous AMR on multi-GPUs. In Lecture Notes in Computer Science Vol. 11887 (eds Weiland, M. et al.) 113–123 (Springer, 2019).
-
Beckingsale, D., Gaudin, W., Herdman, A. & Jarvis, S. Resident block-structured adaptive mesh refinement on thousands of graphics processing units. In Proc. 44th International Conference on Parallel Processing 61–70 (IEEE, 2015).
-
Wang, J. & Yalamanchili, S. Characterization and analysis of dynamic parallelism in unstructured GPU applications. In Proc. IEEE International Symposium on Workload Characterization 51–60 (IEEE, 2014).
-
Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).
Google Scholar
-
Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410–423 (1993).
Google Scholar
-
Steinbach, I. Phase-field models in materials science. Model. Simul. Mat. Sci. Eng. 17, 073001 (2009).
Google Scholar
-
Francois, M. M. et al. Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 21, 198–206 (2017).
Google Scholar
-
Berry, J. et al. Toward multiscale simulations of tailored microstructure formation in metal additive manufacturing. Mater. Today 51, 65–86 (2021).
Google Scholar
-
Allen, S. M. & Cahn, J. W. Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall. 20, 423–433 (1972).
Google Scholar
-
Mullins, W. W. & Sekerka, R. F. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444–451 (1964).
Google Scholar
-
Plapp, M. & Karma, A. Multiscale random-walk algorithm for simulating interfacial pattern formation. Phys. Rev. Lett. 84, 1740–1743 (2000).
Google Scholar
-
Zhang, R., Mao, S. & Haataja, M. P. Chemically reactive and aging macromolecular mixtures. II. Phase separation and coarsening. J. Chem. Phys. 161, 184903 (2024).
Google Scholar
-
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Google Scholar
-
Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
Google Scholar
-
Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).
Google Scholar
-
Mao, S., Kuldinow, D., Haataja, M. P. & Košmrlj, A. Phase behavior and morphology of multicomponent liquid mixtures. Soft Matter 15, 1297–1311 (2019).
Google Scholar
-
Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. III. nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959).
Google Scholar
-
Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).
Google Scholar
-
Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald Reifung). Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 65, 581–591 (1961).
-
Helmholtz XLIII. on discontinuous movements of fluids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 337–346 (1868).
Google Scholar
-
Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics. 3rd edn, Springer, (2009).
Google Scholar
-
McNally, C. P., Lyra, W. & Passy, J.-C. A well-posed Kelvin–Helmholtz instability test and comparison. Astrophys. J. Suppl. Ser. 201, 18 (2012).
Google Scholar
-
Foullon, C., Verwichte, E., Nakariakov, V. M., Nykyri, K. & Farrugia, C. J. Magnetic Kelvin–Helmholtz instability at the Sun. Astrophys. J. Lett. 729, L8 (2011).
Google Scholar
-
Smyth, W. & Moum, J. Ocean mixing by Kelvin–Helmholtz instability. Oceanography 25, 140–149 (2012).
Google Scholar
-
Rusanov, V. V. The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys. 1, 304–320 (1962).
Google Scholar
-
Burau, H. et al. PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 38, 2831–2839 (2010).
Google Scholar
-
Crespo, A. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M. & Rogers, B. D. GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE 6, e20685 (2011).
Google Scholar
-
Montessori, A. et al. Thread-safe lattice boltzmann for high-performance computing on GPUs. J. Comput. Sci. 74, 102165 (2023).
Google Scholar
-
Teyssier, R., Chapon, D. & Bournaud, F. The driving mechanism of starbursts in galaxy mergers. Astrophys. J. Lett. 720, L149–L154 (2010).
Google Scholar
-
Shaw, D. E. et al. Anton 3. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis 1–11 (ACM, 2021).
-
Mudigere, D. et al. Software–hardware co-design for fast and scalable training of deep learning recommendation models. In Proc. 49th Annual International Symposium on Computer Architecture 993–1011 (ACM, 2022).
-
Cong, J. et al. FPGA HLS today: successes, challenges, and opportunities. ACM Trans. Reconfigurable Technol. Syst. 15, 1–42 (2022).
Google Scholar
-
Dally, W. J., Turakhia, Y. & Han, S. Domain-specific hardware accelerators. Commun. ACM 63, 48–57 (2020).
Google Scholar
-
Rocki, K. et al. Fast stencil-code computation on a wafer-scale processor. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis Vol. 58 1–14 (IEEE, 2020).
-
Watanabe, S. & Aoki, T. Large-scale flow simulations using lattice boltzmann method with AMR following free-surface on multiple GPUs. Comput. Phys. Commun. 264, 107871 (2021).
Google Scholar
-
Zhang, R. & Xia, Y. Source code for a dynamic block activation framework for continuum models. Zenodo https://doi.org/10.5281/zenodo.14868458 (2025).
Acknowledgements
R.Z. was supported by the National Science Foundation (NSF) Materials Research Science and Engineering Center Program through the Princeton Center for Complex Materials (PCCM) (grant no. DMR-2011750). Y.X. was supported by the National Natural Science Foundation of China (grant no. 12204162). Useful discussions with M. P. Haataja, R. Teyssier, S. Cohen, J. Lalmansingh and Q. Cai are gratefully acknowledged. The simulations presented in this Resource were performed on computational resources managed and supported by Princeton Research Computing, a consortium of groups including the Princeton Institute for Computational Science and Engineering (PICSciE) and Research Computing at Princeton University.
Author information
Authors and Affiliations
Contributions
R.Z. and Y.X. conceptualized the study, designed the computational framework, implemented the code, analyzed results, visualized simulations and drafted the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Computational Science thanks Cody Permann, Tatu Pinomaa, Nicolò Scapin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Fernando Chirigati, in collaboration with the Nature Computational Science team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2, Supplementary model descriptions and Supplementary Tables 1 and 2.
Source data
Source Data Fig. 3
Excel file for the source data used in Fig. 3.
Source Data Fig. 4
Excel file for the source data used in Fig. 4.
Source Data Fig. 5
Excel file for the source data used in Fig. 5.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Zhang, R., Xia, Y. A dynamic block activation framework for continuum models.
Nat Comput Sci (2025). https://doi.org/10.1038/s43588-025-00780-2
-
Received: 30 August 2024
-
Accepted: 19 February 2025
-
Published: 17 March 2025
-
DOI: https://doi.org/10.1038/s43588-025-00780-2