A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring


Abstract

The complex relationships between continuously monitored health signals and therapeutic regimens can be modelled via machine learning. However, the clinical implementation of the models will require changes to clinical workflows. Here we outline ClinAIOps (‘clinical artificial-intelligence operations’), a framework that integrates continuous therapeutic monitoring and the development of artificial intelligence (AI) for clinical care. ClinAIOps leverages three feedback loops to enable the patient to make treatment adjustments using AI outputs, the clinician to oversee patient progress with AI assistance, and the AI developer to receive continuous feedback from both the patient and the clinician. We lay out the central challenges and opportunities in the deployment of ClinAIOps by means of examples of its application in the management of blood pressure, diabetes and Parkinson’s disease. By enabling more frequent and accurate measurements of a patient’s health and more timely adjustments to their treatment, ClinAIOps may substantially improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Learn more

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ClinAIOps connects stakeholders via feedback loops.
Fig. 2: Timeline of the application of ClinAIOps to CTM, and the roles of patients, clinicians and AI developers.
Fig. 3: Interactions involved in the application of ClinAIOps to the monitoring of patients with PD, atrial fibrillation or hypertension.
Fig. 4: Feedback loops in the application of ClinAIOps to the management of blood pressure.

References

  1. Tison, G. H. et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 3, 409–416 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  2. Dörr, M. et al. The WATCH AF Trial: SmartWATCHes for detection of atrial fibrillation. JACC Clin. Electrophysiol. 5, 199–208 (2019).

    Article 
    PubMed 

    Google Scholar 

  3. Galindo, R. J. et al. Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline. J. Diabetes Sci. Technol. 14, 1035–1064 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  4. Johnston, L., Wang, G., Hu, K., Qian, C. & Liu, G. Advances in biosensors for continuous glucose monitoring towards wearables. Front. Bioeng. Biotechnol. 9, 733810 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  5. Martens, T. et al. Effect of continuous glucose monitoring on glycemic control in patients with Type 2 diabetes treated with basal insulin: a randomized clinical trial. JAMA 325, 2262–2272 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  6. Tschider, C. A. Medical device artificial intelligence: the new tort frontier. BYU Law Rev. 46, 1551 (2020).

    Google Scholar 

  7. Simon, D. A., Shachar, C. & Glenn Cohen, I. Unsettled liability issues for ‘prediagnostic’ wearables and health-related products. JAMA 328, 1391–1392 (2022).

    Article 
    PubMed 

    Google Scholar 

  8. Benroubi, M. Fear, guilt feelings and misconceptions: barriers to effective insulin treatment in type 2 diabetes. Diabetes Res. Clin. Pract. 93, S97–S99 (2011).

    Article 
    PubMed 

    Google Scholar 

  9. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  10. Berwick, D. M., Nolan, T. W. & Whittington, J. The triple aim: care, health and cost. Health Aff. 27, 759–769 (2008).

    Article 

    Google Scholar 

  11. Assadi, A. et al. An integration engineering framework for machine learning in healthcare. Front. Digit. Health 4, 932411 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  12. Breaux-Shropshire, T. L., Judd, E., Vucovich, L. A., Shropshire, T. S. & Singh, S. Does home blood pressure monitoring improve patient outcomes? A systematic review comparing home and ambulatory blood pressure monitoring on blood pressure control and patient outcomes. Integr. Blood Press. Control 8, 43–49 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  13. Siontis, K. C., Noseworthy, P. A., Attia, Z. I. & Friedman, P. A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18, 465–478 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  14. Attia, Z. I. et al. Novel bloodless potassium determination using a signal‐processed single‐lead ECG. J. Am. Heart Assoc. 5, e002746 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  15. Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens. 4, 2196–2204 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  16. Powers, R. et al. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci. Transl. Med. 13, eabd7865 (2021).

    Article 
    PubMed 

    Google Scholar 

  17. Fletcher, R. R., Tam, S., Omojola, O., Redemske, R. & Kwan, J. Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1802–1805 (2011).

    Google Scholar 

  18. Russell-Jones, D., Pouwer, F. & Khunti, K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes. Metab. 20, 488–496 (2018).

    Article 
    PubMed 

    Google Scholar 

  19. Przezak, A., Bielka, W. & Molęda, P. Fear of hypoglycemia—an underestimated problem. Brain Behav. 12, e2633 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  20. Yeh, T., Yeung, M. & Mendelsohn Curanaj, F. A. Managing patients with insulin pumps and continuous glucose monitors in the hospital: to wear or not to wear. Curr. Diab. Rep. 21, 7 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  21. Waks, J. W. et al. Intermittent anticoagulation guided by continuous atrial fibrillation burden monitoring using dual-chamber pacemakers and implantable cardioverter-defibrillators: results from the Tailored Anticoagulation for Non-Continuous Atrial Fibrillation (TACTIC-AF) pilot study. Heart Rhythm 15, 1601–1607 (2018).

    Article 
    PubMed 

    Google Scholar 

  22. Passman, R. et al. Targeted anticoagulation for atrial fibrillation guided by continuous rhythm assessment with an insertable cardiac monitor: the rhythm evaluation for anticoagulation with continuous monitoring (React.com) pilot study. J. Cardiovasc. Electrophysiol 27, 264–270 (2016).

    Article 
    PubMed 

    Google Scholar 

  23. Wasserlauf, J. et al. Smartwatch performance for the detection and quantification of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 12, e006834 (2019).

    Article 
    PubMed 

    Google Scholar 

  24. Leading science, research and technology leaders join forces to accelerate REACT-AF trial. American Heart Association (29 August 2022).

  25. Bienefeld, N. et al. Solving the explainable AI conundrum by bridging clinicians’ needs and developers’ goals. NPJ Digit. Med. 6, 94 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  26. Attig, C. & Franke, T. Abandonment of personal quantification: a review and empirical study investigating reasons for wearable activity tracking attrition. Comput. Hum. Behav. 102, 223–237 (2020).

    Article 

    Google Scholar 

  27. Wang, T. et al. Identifying major impact factors affecting the continuance intention of mHealth: a systematic review and multi-subgroup meta-analysis. NPJ Digit. Med. 5, 145 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Meyerowitz-Katz, G. et al. Rates of attrition and dropout in app-based interventions for chronic disease: systematic review and meta-analysis. J. Med. Internet Res. 22, e20283 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  29. Helander, E., Kaipainen, K., Korhonen, I. & Wansink, B. Factors related to sustained use of a free mobile app for dietary self-monitoring with photography and peer feedback: retrospective cohort study. J. Med. Internet Res. 16, e109 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  30. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  31. Zhang, Y., Suda, N., Lai, L. & Chandra, V. Hello Edge: keyword spotting on microcontrollers. Preprint at https://arxiv.org/abs/1711.07128 (2017).

  32. Basaklar, T., Tuncel, Y., An, S. & Ogras, U. Wearable devices and low-power design for smart health applications: challenges and opportunities. In Proc. 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) (eds Li, H. & Augustine, C.) 1 (IEEE, 2021).

  33. Sundrani, S. et al. Predicting patient decompensation from continuous physiologic monitoring in the emergency department. NPJ Digit. Med. 6, 60 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Jackson, C., Shahsahebi, M., Wedlake, T. & DuBard, C. A. Timeliness of outpatient follow-up: an evidence-based approach for planning after hospital discharge. Ann. Fam. Med. 13, 115–122 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Erb, M. K. et al. mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinsonas disease.npj Digit. Med. 3, 6 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  36. Steinkirchner, A. B. et al. Self-report of chronic diseases in old-aged individuals: extent of agreement with general practitioner medical records in the German AugUR study. J. Epidemiol. Community Health 76, 931–938 (2022).

    Article 
    PubMed 

    Google Scholar 

  37. Pirtošek, Z. et al. Update on the management of Parkinson’s disease for general neurologists. Parkinsonas Dis 2020, 9131474 (2020).

    Google Scholar 

  38. Shalash, A., Spindler, M. & Cubo, E. Global perspective on telemedicine for Parkinson’s disease. J. Parkinsons Dis. 11, S11–S18 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  39. Greenland, J. C., Williams-Gray, C. H. & Barker, R. A. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur. J. Neurosci. 49, 328–338 (2019).

    Article 
    PubMed 

    Google Scholar 

  40. Drew, B. J. et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE 9, e110274 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  41. Chromik, J. et al. Computational approaches to alleviate alarm fatigue in intensive care medicine: a systematic literature review. Front. Digit. Health 4, 843747 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  42. Nimri, R. et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat. Med. 26, 1380–1384 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  43. Zarrinpar, A. et al. Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform. Sci. Transl. Med. 8, 333ra49 (2016).

    Article 
    PubMed 

    Google Scholar 

  44. Pantuck, A. J. et al. Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform. Adv. Ther. 1, 1800104 (2018).

    Article 

    Google Scholar 

  45. Kee, T. et al. Harnessing CURATE.AI as a digital therapeutics platform by identifying N-of-1 learning trajectory profiles. Adv. Ther. 2, 1900023 (2019).

    Article 

    Google Scholar 

  46. Liang, W. et al. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 4, 669–677 (2022).

    Article 

    Google Scholar 

  47. Zhang, A., Xing, L., Zou, J. & Wu, J. C. Shifting machine learning for healthcare from development to deployment and from models to data. Nat. Biomed. Eng. 6, 1330–1345 (2022).

    Article 
    PubMed 

    Google Scholar 

  48. Feng, J. et al. Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare. NPJ Digit. Med. 5, 66 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  49. Tang, J. et al. Corrigendum: application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients. Sci. Rep. 8, 46936 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  50. Liu, R., Li, X., Zhang, W. & Zhou, H.-H. Comparison of nine statistical model based warfarin pharmacogenetic dosing algorithms using the racially diverse International Warfarin Pharmacogenetic Consortium cohort database. PLoS ONE 10, e0135784 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  51. Zhu, X. et al. A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters. Sci. Rep. 11, 5568 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  52. Jovanović, M. et al. Application of counter-propagation artificial neural networks in prediction of topiramate concentration in patients with epilepsy. J. Pharm. Pharm. Sci. 18, 856–862 (2015).

    Article 
    PubMed 

    Google Scholar 

  53. Tsichlaki, S., Koumakis, L. & Tsiknakis, M. Type 1 diabetes hypoglycemia prediction algorithms: systematic review. JMIR Diabetes 7, e34699 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. US Food and Drug Administration et al. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-based Software as a Medical Device (SaMD) (US FDA, 019).

  55. Salama, K., Kazmierczak, J. & Schut, D. Practitioners Guide to MLOps: A Framework for Continuous Delivery and Automation of Machine Learning (Google, 2021).

  56. Utsumil, Y., Rudovicl, O. O., Petersonl, K., Guerrero, R. & Picardl, R. W. Personalized Gaussian processes for forecasting of Alzheimer’s Disease Assessment Scale-Cognition sub-scale (ADAS-Cog13). Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 4007–4011 (2018).

    Google Scholar 

  57. Liu, K. et al. Development and validation of a personalized model with transfer learning for acute kidney injury risk estimation using electronic health records. JAMA Netw. Open 5, e2219776 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  58. Hard, A. et al. Federated learning for mobile keyboard prediction. Preprint at https://arxiv.org/abs/1811.03604 (2018).

  59. Agarwal, R. Rehospitalization rates in hypertensive emergency. Hypertension 73, 49–51 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  60. Miller, J., McNaughton, C., Joyce, K., Binz, S. & Levy, P. Hypertension management in emergency departments. Am. J. Hypertens. 33, 927–934 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  61. Block, R. C. et al. Conventional pulse transit times as markers of blood pressure changes in humans. Sci. Rep. 10, 16373 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  62. Nabeel, P. M., Jayaraj, J. & Mohanasankar, S. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique. Physiol. Meas. 38, 2122–2140 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  63. Islam, S. M. S. et al. Wearable cuffless blood pressure monitoring devices: a systematic review and meta-analysis. Eur. Heart J. Digit. Health 3, 323–337 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  64. Zheng, Y.-L., Yan, B. P., Zhang, Y.-T. & Poon, C. C. Y. An armband wearable device for overnight and cuff-less blood pressure measurement. IEEE Trans. Biomed. Eng. 61, 2179–2186 (2014).

    Article 
    PubMed 

    Google Scholar 

  65. AI for Anti-Hypertensive Medication Titration (NIH NCBI, accessed 1 October 2023); https://clinicaltrials.gov/ct2/show/NCT05376683

  66. Morawski, K. et al. Association of a Smartphone application with medication adherence and blood pressure control: the MedISAFE-BP randomized clinical trial. JAMA Intern. Med. 178, 802–809 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  67. Baumann, B. M. et al. Provider self-report and practice: reassessment and referral of emergency department patients with elevated blood pressure. Am. J. Hypertens. 22, 604–610 (2009).

    Article 
    PubMed 

    Google Scholar 

  68. National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Committee on Women in Science, Engineering, and Medicine & Committee on Improving the Representation of Women and Underrepresented Minorities in Clinical Trials and Research. Improving Representation in Clinical Trials and Research: Building Research Equity for Women and Underrepresented Groups (National Academies Press, 2022).

  69. Hoel, A. W. et al. Under-representation of women and ethnic minorities in vascular surgery randomized controlled trials. J. Vasc. Surg. 50, 349–354 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  70. Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis. Oncol. 4, 19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  71. Goyal, M., Ospel, J. M., Kappelhof, M. & Ganesh, A. Challenges of outcome prediction for acute stroke treatment decisions. Stroke 52, 1921–1928 (2021).

    Article 
    PubMed 

    Google Scholar 

  72. Okumura, K. et al. Comparing patient and physician risk tolerance for bleeding events associated with anticoagulants in atrial fibrillation-evidence from the United States and Japan. Value in Health Regional Issues 6, 65–72 (2015).

    Article 
    PubMed 

    Google Scholar 

  73. Wiktorski, T. Challenges in causal inference from personal monitoring devices. In Proc. Federated Conference on Computer Science and Information Systems (ed. Jassem, K.) 99–102 (PTI, 2018).

  74. Causality in digital medicine. Nat. Commun. 12, 5471 (2021).

  75. Nogueira, A. R., Gama, J. & Ferreira, C. A. Improving prediction with causal probabilistic variables. In Proc. Advances in Intelligent Data Analysis XVIII (eds Berthold, M., Feelders, A. & Krempl, G.) 379–390 (Springer, 2020).

  76. Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W. Integrating machine learning with human knowledge. iScience 23, 101656 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  77. Taylor, L. et al. Using virtual representations in mHealth application interventions for health-related behaviour change: a systematic review. Cogent Psychol. 9, 2069906 (2022).

    Article 

    Google Scholar 

  78. El-Gayar, O., Ofori, M. & Nawar, N. On the efficacy of behavior change techniques in mHealth for self-management of diabetes: a meta-analysis. J. Biomed. Inform. 119, 103839 (2021).

    Article 
    PubMed 

    Google Scholar 

  79. Jakob, R. et al. Factors influencing adherence to mHealth apps for prevention or management of noncommunicable diseases: systematic review. J. Med. Internet Res. 24, e35371 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  80. Everett, E. M. et al. A longitudinal view of disparities in insulin pump use among youth with type 1 diabetes: the SEARCH for Diabetes in Youth Study. Diabetes Technol. Ther. 25, 131–139 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  81. Davis, K. & Guterman, S. Rewarding excellence and efficiency in Medicare payments. Milbank Q. 85, 449–468 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  82. Crowson, M. G. & Chan, T. C. Y. Machine learning as a catalyst for value-based health care. J. Med. Syst. 44, 139 (2020).

    Article 
    PubMed 

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Karargyris for helpful feedback.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the content, reviewed and edited the manuscript, and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to
Emma Chen or Pranav Rajpurkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks David Bates, Randall Moorman and Xiangrong Liu for their contributions to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E., Prakash, S., Janapa Reddi, V. et al. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring.
Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01115-0

Download citation

  • Received: 15 March 2023

  • Accepted: 26 September 2023

  • Published: 06 November 2023

  • DOI: https://doi.org/10.1038/s41551-023-01115-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative


Leave a Reply

Your email address will not be published. Required fields are marked *