Accelerating climate technologies through the science of scale-up


Abstract

Avoiding the worst effects of climate change depends on our ability to scale and deploy technologies faster than ever before. Scale-up has largely been the domain of industrial research and development teams, but advances in modeling and experimental techniques increasingly allow early-stage researchers to contribute to the process. Here we argue that early assessments of technology market fit and how the physics governing system performance evolves with scale can de-risk technology development and accelerate deployment. We highlight tools and processes that can be used to assess both these factors at an early stage. By bringing together technical risk assessments, scaled physics modeling, data analysis and in situ experimentation within multidisciplinary teams, new technologies can be invented, developed and deployed on a shorter timetable with greater probability of success.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */

/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */

Fig. 1: Overview of scale-up tools and approaches.
Fig. 2: Technology development pipeline and risk assessment tools.
Fig. 3: Typical second law efficiencies for optimized industrial processes.
Fig. 4: Surrogate modeling for accelerated evaluation of low-TRL technologies.
Fig. 5: Advanced models, including reduced-order systems and data-driven networks, can be uniquely leveraged to glean new insights into physical processes.

References

  1. Davis, G. E. Proposed technical society. Chem. News 41, 261 (1880).

    Google Scholar 

  2. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  3. Gross, R., Hanna, R., Gambhir, A., Heptonstall, P. & Speirs, J. How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technology. Energy Policy 123, 682–699 (2018).

    Article 

    Google Scholar 

  4. Harmsen, J. Industrial Process Scale-up: A Practical Innovation Guide from Idea to Commercial Implementation (Elsevier, 2019).

  5. Wang, N., Akimoto, K. & Nemet, G. F. What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy 158, 112546 (2021).

    Article 
    CAS 

    Google Scholar 

  6. Mankins, J. C. Technology readiness and risk assessments: a new approach. Acta Astronaut. 65, 1208–1215 (2009).

    Article 

    Google Scholar 

  7. Koivisto, R. et al. Integrating future-oriented technology analysis and risk assessment methodologies. Technol. Forecast. Soc. Change 76, 1163–1176 (2009).

    Article 

    Google Scholar 

  8. Peng, F. in Foundations of Robotics: A Multidisciplinary Approach with Python and ROS (eds Herath, D. & St-Onge, D.) 63–81 (Springer, 2022).

  9. Moore, T. et al. Electrolyzer energy dominates separation costs in state-of-the-art CO2 electrolyzers: implications for single-pass CO2 utilization. Joule 7, 782–796 (2023).

    Article 
    CAS 

    Google Scholar 

  10. Walker, W. H., Lewis, W. K. & McAdams, W. H. Principles of Chemical Engineering (McGraw-Hill, 1923).

  11. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena (Wiley, 2006).

  12. Whitaker, S. The Method of Volume Averaging 13 (Springer Science & Business Media, 1998).

  13. McCabe, W. L., Smith, J. C. & Harriott, P. Unit Operations of Chemical Engineering (McGraw-Hill, 1993).

  14. Levenspiel, O. Chemical Reaction Engineering (Wiley, 1998).

  15. Fogler, H. Elements of Chemical Reaction Engineering (Pearson, 2020).

  16. Deen, W. M. Analysis of Transport Phenomena (Oxford Univ. Press, 2011).

  17. Lin, Y.-J. & Rochelle, G. T. Approaching a reversible stripping process for CO2 capture. Chem. Eng. J. 283, 1033–1043 (2016).

    Article 
    CAS 

    Google Scholar 

  18. van Gool, W. Exergy analysis of industrial processes. Energy 17, 791–803 (1992).

    Article 

    Google Scholar 

  19. Hoseinpoori, S., Pallarès, D., Johnsson, F. & Thunman, H. A comparative exergy-based assessment of direct air capture technologies. Mitig. Adapt. Strateg. Glob. Change 28, 39 (2023).

    Article 

    Google Scholar 

  20. Christopher, K. & Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 5, 6640–6651 (2012).

    Article 
    CAS 

    Google Scholar 

  21. Riboldi, L. & Bolland, O. Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants. Int. J. Greenh. Gas Control 39, 1–16 (2015).

    Article 
    CAS 

    Google Scholar 

  22. Holmes, H. E., Realff, M. J. & Lively, R. P. Water management and heat integration in direct air capture systems. Nat. Chem. Eng. 1, 208–215 (2024).

    Article 

    Google Scholar 

  23. Hausmann, J. N. et al. Hyping direct seawater electrolysis hinders electrolyzer development. Joule 8, 2436–2442 (2024).

    Article 

    Google Scholar 

  24. Ludwig, H. Reverse Osmosis Seawater Desalination Volume 2: Planning, Process Design and Engineering—A Manual for Study and Practice (Springer, 2022).

  25. Velasco, J. A. C., Tawarmalani, M. & Agrawal, R. Systematic analysis reveals thermal separations are not necessarily most energy intensive. Joule 5, 330–343 (2021).

    Article 

    Google Scholar 

  26. Lin, Y.-J., Chen, E. & Rochelle, G. T. Pilot plant test of the advanced flash stripper for CO2 capture. Faraday Discuss. 192, 37–58 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  27. Sahinidis, N. The ALAMO approach to machine learning. Comput. Aided Chem. Eng 38, 2410 (2016).

    Article 

    Google Scholar 

  28. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  29. Baker-Fales, M., Chen, T.-Y. & Vlachos, D. G. Scale-up of microwave-assisted, continuous flow, liquid phase reactors: application to 5-hydroxymethylfurfural production. Chem. Eng. J. 454, 139985 (2023).

    Article 
    CAS 

    Google Scholar 

  30. Miriyala, S. S., Pujari, K. N., Naik, S. & Mitra, K. Evolutionary neural architecture search for surrogate models to enable optimization of industrial continuous crystallization process. Powder Technol. 405, 117527 (2022).

    Article 
    CAS 

    Google Scholar 

  31. Miller, D. C. Accelerating the identification, development and scale up of carbon capture technologies through advanced modeling. In Proc. TechConnect World Innovation Conference & Expo NETL-PUB-1213 (OSTI, 2015).

  32. Schweidtmann, A. M. et al. Machine learning in chemical engineering: a perspective. Chem. Ing. Tech. 93, 2029–2039 (2021).

    Article 
    CAS 

    Google Scholar 

  33. Dobbelaere, M. R., Plehiers, P. P., Van de Vijver, R., Stevens, C. V. & Van Geem, K. M. Machine learning in chemical engineering: strengths, weaknesses, opportunities and threats. Engineering 7, 1201–1211 (2021).

    Article 
    CAS 

    Google Scholar 

  34. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article 

    Google Scholar 

  35. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  36. Benner, P., Gugercin, S. & Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015).

    Article 

    Google Scholar 

  37. Rowley, C. W. & Dawson, S. T. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017).

    Article 

    Google Scholar 

  38. Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Neural Information Processing Systems (2018).

  39. Fries, W. D., He, X. & Choi, Y. LaSDI: parametric latent space dynamics identification. Comput. Methods Appl. Mech. Eng. 399, 115436 (2022).

    Article 

    Google Scholar 

  40. Li, Z. et al. Fourier neural operator for parametric partial differential equations. Preprint at https://arxiv.org/abs/2010.08895 (2020).

  41. McBane, S. & Choi, Y. Component-wise reduced order model lattice-type structure design. Comput. Methods Appl. Mech. Eng. 381, 113813 (2021).

    Article 

    Google Scholar 

  42. Chung, S. W. et al. Train small, model big: scalable physics simulators via reduced order modeling and domain decomposition. Comput. Methods Appl. Mech. Eng. 427, 117041 (2024).

    Article 

    Google Scholar 

  43. Wilson, G. & Deal, C. Activity coefficients and molecular structure. Activity coefficients in changing environments-solutions of groups. Ind. Eng. Chem. Fundam. 1, 20–23 (1962).

    Article 
    CAS 

    Google Scholar 

  44. Fredenslund, A., Jones, R. L. & Prausnitz, J. M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975).

    Article 
    CAS 

    Google Scholar 

  45. Haslam, A. J. et al. Expanding the applications of the SAFT-γ Mie group-contribution equation of state: prediction of thermodynamic properties and phase behavior of mixtures. J. Chem. Eng. Data 65, 5862–5890 (2020).

    Article 
    CAS 

    Google Scholar 

  46. Walker, P. J., Yew, H.-W. & Riedemann, A. Clapeyron.jl: an extensible, open-source fluid thermodynamics toolkit. Ind. Eng. Chem. Res. 61, 7130–7153 (2022).

    Article 
    CAS 

    Google Scholar 

  47. Davidopoulou, C. & Ouranidis, A. Pharma 4.0—artificially intelligent digital twins for solidified nanosuspensions. Pharmaceutics 14, 2113 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Papadopoulos, A. I. et al. Molecular engineering of sustainable phase-change solvents: from digital design to scaling-up for CO2 capture. Chem. Eng. J. 420, 127624 (2021).

    Article 
    CAS 

    Google Scholar 

  49. Winter, B., Winter, C., Esper, T., Schilling, J. & Bardow, A. SPT-NRTL: a physics-guided machine learning model to predict thermodynamically consistent activity coefficients. Fluid Phase Equilib. 568, 113731 (2023).

    Article 
    CAS 

    Google Scholar 

  50. Ghoroghi, A., Rezgui, Y., Petri, I. & Beach, T. Advances in application of machine learning to life cycle assessment: a literature review. Int. J. Life Cycle Assess. 27, 433–456 (2022).

    Article 

    Google Scholar 

  51. Frey, D., Neyerlin, K. C. & Modestino, M. A. Bayesian optimization of electrochemical devices for electrons-to-molecules conversions: the case of pulsed CO2 electroreduction. React. Chem. Eng. 8, 323–331 (2023).

    Article 
    CAS 

    Google Scholar 

  52. Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Primer 1, 23 (2021).

    Article 
    CAS 

    Google Scholar 

  53. Annevelink, E. et al. AutoMat: automated materials discovery for electrochemical systems. MRS Bull. 47, 1036–1044 (2022).

    Article 

    Google Scholar 

  54. Lee, N. A., Shen, S. C. & Buehler, M. J. An automated biomateriomics platform for sustainable programmable materials discovery. Matter 5, 3597–3613 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  55. Tajsoleiman, T. Automating Experimentation in Miniaturized Reactors (Technical Univ. Denmark, 2018).

  56. Selekman, J. A. et al. High-throughput automation in chemical process development. Annu. Rev. Chem. Biomol. Eng. 8, 525–547 (2017).

    Article 
    PubMed 

    Google Scholar 

  57. Alwosheel, A., van Cranenburgh, S. & Chorus, C. G. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J. Choice Model. 28, 167–182 (2018).

    Article 

    Google Scholar 

  58. Zhao, Y., Gao, J., Bian, X., Tang, H. & Zhang, T. From the perspective of experimental practice: high-throughput computational screening in photocatalysis. Green Energy Environ. 9, 1–6 (2024).

    Article 

    Google Scholar 

  59. Chakraborty, S. et al. Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2, 837–845 (2017).

    Article 
    CAS 

    Google Scholar 

  60. Schütter, C., Husch, T., Korth, M. & Balducci, A. Toward new solvents for EDLCs: from computational screening to electrochemical validation. J. Phys. Chem. C 119, 13413–13424 (2015).

    Article 

    Google Scholar 

  61. Stephens, I. E. et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).

    Article 
    CAS 

    Google Scholar 

  62. Li, X., Wang, S., Li, L., Sun, Y. & Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142, 9567–9581 (2020).

    CAS 
    PubMed 

    Google Scholar 

  63. Moss, A. B. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2023).

    Article 
    CAS 

    Google Scholar 

  64. Biswas, I. et al. Advancement of segmented cell technology in low temperature hydrogen technologies. Energies 13, 2301 (2020).

    Article 
    CAS 

    Google Scholar 

  65. Heldebrant, D. J. et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities and outlook. Chem. Rev. 117, 9594–9624 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  66. Ellebracht, N. C. et al. 3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture. Energy Environ. Sci. 16, 1752–1762 (2023).

    Article 
    CAS 

    Google Scholar 

  67. Kvamsdal, H. M. & Rochelle, G. T. Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind. Eng. Chem. Res. 47, 867–875 (2008).

    Article 
    CAS 

    Google Scholar 

  68. Sun, S. et al. Real-time imaging and holdup measurement of carbon dioxide under CCS conditions using electrical capacitance tomography. IEEE Sens. J. 18, 7551–7559 (2018).

    Article 
    CAS 

    Google Scholar 

  69. Gouedard, C., Picq, D., Launay, F. & Carrette, P.-L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 10, 244–270 (2012).

    Article 
    CAS 

    Google Scholar 

  70. Dalton, A., Wolff, K. & Bekker, B. Multidisciplinary research as a complex system. Int. J. Qual. Methods 20, 16094069211038400 (2021).

    Article 

    Google Scholar 

  71. Singh, R. K. et al. Hydrodynamics of countercurrent flow in an additive-manufactured column with triply periodic minimal surfaces for carbon dioxide capture. Chem. Eng. J. 450, 138124 (2022).

    Article 
    CAS 

    Google Scholar 

  72. Moore, T., Nguyen, D., Iyer, J., Roy, P. & Stolaroff, J. K. Advanced absorber heat integration via heat exchange packings. AIChE J. 67, e17243 (2021).

    Article 
    CAS 

    Google Scholar 

  73. Gongora, A. E. et al. Accelerating the design of lattice structures using machine learning. Sci. Rep. 14, 13703 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Lin, T. Y. et al. Advancing carbon capture from bench to pilot scale using dynamic similitude. Cell Rep. Phys. Sci. 5, 102019 (2024).

    Article 
    CAS 

    Google Scholar 

  75. Xia, J., Jödecke, M., Pérez-Salado Kamps, Á. & Maurer, G. Solubility of CO2 in (CH3OH + H2O). J. Chem. Eng. Data 49, 1756–1759 (2004).

    Article 
    CAS 

    Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344 and was supported by Laboratory Directed Research and Development (LDRD) funding under project number 22-SI-006 (release number: LLNL-JRNL-860943-DRAFT). We thank C. Lee for drafting the figures.

Author information

Authors and Affiliations

Authors

Contributions

S.E.B., C.H. and E.B.D. conceived the work. T.M. and A.A.W. organized the scope of the paper, worked with all authors on the content of each section, developed the introduction and conclusion, and conducted the final edits with equal contributions. A.A.W., T.O. and C.Y. worked on the risk assessment section. T.M., T.Y.L., V.M.E., N.R.C., P.R., A.E.G. and Y.C. worked on the modeling section, with W.L., A.E.G. and A.A. developing the LCA/TEA discussion and B.G., D.I.O., A.E.G. and S.W.C. developing the big data, digital twins and artificial intelligence section. J.D. and H.-Y.J. developed the detailed experimentation section. C.H., M.G. and A.P. developed the CO2 electrolysis section. D.N. developed the CO2 capture section. T.O. developed the perils of premature optimization and oversimplification section. A.S. and S.E.B. developed the section on building a scale-up team. T.M., A.A.W., C.H., S.E.B., D.N. and E.B.D. developed the case study section. All authors contributed to the text and figure edits throughout the entire paper.

Corresponding authors

Correspondence to
Christopher Hahn or Sarah E. Baker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, T., Wong, A.A., Giera, B. et al. Accelerating climate technologies through the science of scale-up.
Nat Chem Eng (2024). https://doi.org/10.1038/s44286-024-00143-0

Download citation

  • Received: 03 April 2024

  • Accepted: 03 October 2024

  • Published: 18 December 2024

  • DOI: https://doi.org/10.1038/s44286-024-00143-0


Leave a Reply

Your email address will not be published. Required fields are marked *