Abstract
Avoiding the worst effects of climate change depends on our ability to scale and deploy technologies faster than ever before. Scale-up has largely been the domain of industrial research and development teams, but advances in modeling and experimental techniques increasingly allow early-stage researchers to contribute to the process. Here we argue that early assessments of technology market fit and how the physics governing system performance evolves with scale can de-risk technology development and accelerate deployment. We highlight tools and processes that can be used to assess both these factors at an early stage. By bringing together technical risk assessments, scaled physics modeling, data analysis and in situ experimentation within multidisciplinary teams, new technologies can be invented, developed and deployed on a shorter timetable with greater probability of success.
This is a preview of subscription content, access via your institution
Access options
/* style specs end */
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */
References
-
Davis, G. E. Proposed technical society. Chem. News 41, 261 (1880).
-
IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).
-
Gross, R., Hanna, R., Gambhir, A., Heptonstall, P. & Speirs, J. How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technology. Energy Policy 123, 682–699 (2018).
Google Scholar
-
Harmsen, J. Industrial Process Scale-up: A Practical Innovation Guide from Idea to Commercial Implementation (Elsevier, 2019).
-
Wang, N., Akimoto, K. & Nemet, G. F. What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy 158, 112546 (2021).
Google Scholar
-
Mankins, J. C. Technology readiness and risk assessments: a new approach. Acta Astronaut. 65, 1208–1215 (2009).
Google Scholar
-
Koivisto, R. et al. Integrating future-oriented technology analysis and risk assessment methodologies. Technol. Forecast. Soc. Change 76, 1163–1176 (2009).
Google Scholar
-
Peng, F. in Foundations of Robotics: A Multidisciplinary Approach with Python and ROS (eds Herath, D. & St-Onge, D.) 63–81 (Springer, 2022).
-
Moore, T. et al. Electrolyzer energy dominates separation costs in state-of-the-art CO2 electrolyzers: implications for single-pass CO2 utilization. Joule 7, 782–796 (2023).
Google Scholar
-
Walker, W. H., Lewis, W. K. & McAdams, W. H. Principles of Chemical Engineering (McGraw-Hill, 1923).
-
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena (Wiley, 2006).
-
Whitaker, S. The Method of Volume Averaging 13 (Springer Science & Business Media, 1998).
-
McCabe, W. L., Smith, J. C. & Harriott, P. Unit Operations of Chemical Engineering (McGraw-Hill, 1993).
-
Levenspiel, O. Chemical Reaction Engineering (Wiley, 1998).
-
Fogler, H. Elements of Chemical Reaction Engineering (Pearson, 2020).
-
Deen, W. M. Analysis of Transport Phenomena (Oxford Univ. Press, 2011).
-
Lin, Y.-J. & Rochelle, G. T. Approaching a reversible stripping process for CO2 capture. Chem. Eng. J. 283, 1033–1043 (2016).
Google Scholar
-
van Gool, W. Exergy analysis of industrial processes. Energy 17, 791–803 (1992).
Google Scholar
-
Hoseinpoori, S., Pallarès, D., Johnsson, F. & Thunman, H. A comparative exergy-based assessment of direct air capture technologies. Mitig. Adapt. Strateg. Glob. Change 28, 39 (2023).
Google Scholar
-
Christopher, K. & Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 5, 6640–6651 (2012).
Google Scholar
-
Riboldi, L. & Bolland, O. Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants. Int. J. Greenh. Gas Control 39, 1–16 (2015).
Google Scholar
-
Holmes, H. E., Realff, M. J. & Lively, R. P. Water management and heat integration in direct air capture systems. Nat. Chem. Eng. 1, 208–215 (2024).
Google Scholar
-
Hausmann, J. N. et al. Hyping direct seawater electrolysis hinders electrolyzer development. Joule 8, 2436–2442 (2024).
Google Scholar
-
Ludwig, H. Reverse Osmosis Seawater Desalination Volume 2: Planning, Process Design and Engineering—A Manual for Study and Practice (Springer, 2022).
-
Velasco, J. A. C., Tawarmalani, M. & Agrawal, R. Systematic analysis reveals thermal separations are not necessarily most energy intensive. Joule 5, 330–343 (2021).
Google Scholar
-
Lin, Y.-J., Chen, E. & Rochelle, G. T. Pilot plant test of the advanced flash stripper for CO2 capture. Faraday Discuss. 192, 37–58 (2016).
Google Scholar
-
Sahinidis, N. The ALAMO approach to machine learning. Comput. Aided Chem. Eng 38, 2410 (2016).
Google Scholar
-
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
-
Baker-Fales, M., Chen, T.-Y. & Vlachos, D. G. Scale-up of microwave-assisted, continuous flow, liquid phase reactors: application to 5-hydroxymethylfurfural production. Chem. Eng. J. 454, 139985 (2023).
Google Scholar
-
Miriyala, S. S., Pujari, K. N., Naik, S. & Mitra, K. Evolutionary neural architecture search for surrogate models to enable optimization of industrial continuous crystallization process. Powder Technol. 405, 117527 (2022).
Google Scholar
-
Miller, D. C. Accelerating the identification, development and scale up of carbon capture technologies through advanced modeling. In Proc. TechConnect World Innovation Conference & Expo NETL-PUB-1213 (OSTI, 2015).
-
Schweidtmann, A. M. et al. Machine learning in chemical engineering: a perspective. Chem. Ing. Tech. 93, 2029–2039 (2021).
Google Scholar
-
Dobbelaere, M. R., Plehiers, P. P., Van de Vijver, R., Stevens, C. V. & Van Geem, K. M. Machine learning in chemical engineering: strengths, weaknesses, opportunities and threats. Engineering 7, 1201–1211 (2021).
Google Scholar
-
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
Google Scholar
-
Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).
Google Scholar
-
Benner, P., Gugercin, S. & Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015).
Google Scholar
-
Rowley, C. W. & Dawson, S. T. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017).
Google Scholar
-
Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Neural Information Processing Systems (2018).
-
Fries, W. D., He, X. & Choi, Y. LaSDI: parametric latent space dynamics identification. Comput. Methods Appl. Mech. Eng. 399, 115436 (2022).
Google Scholar
-
Li, Z. et al. Fourier neural operator for parametric partial differential equations. Preprint at https://arxiv.org/abs/2010.08895 (2020).
-
McBane, S. & Choi, Y. Component-wise reduced order model lattice-type structure design. Comput. Methods Appl. Mech. Eng. 381, 113813 (2021).
Google Scholar
-
Chung, S. W. et al. Train small, model big: scalable physics simulators via reduced order modeling and domain decomposition. Comput. Methods Appl. Mech. Eng. 427, 117041 (2024).
Google Scholar
-
Wilson, G. & Deal, C. Activity coefficients and molecular structure. Activity coefficients in changing environments-solutions of groups. Ind. Eng. Chem. Fundam. 1, 20–23 (1962).
Google Scholar
-
Fredenslund, A., Jones, R. L. & Prausnitz, J. M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975).
Google Scholar
-
Haslam, A. J. et al. Expanding the applications of the SAFT-γ Mie group-contribution equation of state: prediction of thermodynamic properties and phase behavior of mixtures. J. Chem. Eng. Data 65, 5862–5890 (2020).
Google Scholar
-
Walker, P. J., Yew, H.-W. & Riedemann, A. Clapeyron.jl: an extensible, open-source fluid thermodynamics toolkit. Ind. Eng. Chem. Res. 61, 7130–7153 (2022).
Google Scholar
-
Davidopoulou, C. & Ouranidis, A. Pharma 4.0—artificially intelligent digital twins for solidified nanosuspensions. Pharmaceutics 14, 2113 (2022).
Google Scholar
-
Papadopoulos, A. I. et al. Molecular engineering of sustainable phase-change solvents: from digital design to scaling-up for CO2 capture. Chem. Eng. J. 420, 127624 (2021).
Google Scholar
-
Winter, B., Winter, C., Esper, T., Schilling, J. & Bardow, A. SPT-NRTL: a physics-guided machine learning model to predict thermodynamically consistent activity coefficients. Fluid Phase Equilib. 568, 113731 (2023).
Google Scholar
-
Ghoroghi, A., Rezgui, Y., Petri, I. & Beach, T. Advances in application of machine learning to life cycle assessment: a literature review. Int. J. Life Cycle Assess. 27, 433–456 (2022).
Google Scholar
-
Frey, D., Neyerlin, K. C. & Modestino, M. A. Bayesian optimization of electrochemical devices for electrons-to-molecules conversions: the case of pulsed CO2 electroreduction. React. Chem. Eng. 8, 323–331 (2023).
Google Scholar
-
Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Primer 1, 23 (2021).
Google Scholar
-
Annevelink, E. et al. AutoMat: automated materials discovery for electrochemical systems. MRS Bull. 47, 1036–1044 (2022).
Google Scholar
-
Lee, N. A., Shen, S. C. & Buehler, M. J. An automated biomateriomics platform for sustainable programmable materials discovery. Matter 5, 3597–3613 (2022).
Google Scholar
-
Tajsoleiman, T. Automating Experimentation in Miniaturized Reactors (Technical Univ. Denmark, 2018).
-
Selekman, J. A. et al. High-throughput automation in chemical process development. Annu. Rev. Chem. Biomol. Eng. 8, 525–547 (2017).
Google Scholar
-
Alwosheel, A., van Cranenburgh, S. & Chorus, C. G. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J. Choice Model. 28, 167–182 (2018).
Google Scholar
-
Zhao, Y., Gao, J., Bian, X., Tang, H. & Zhang, T. From the perspective of experimental practice: high-throughput computational screening in photocatalysis. Green Energy Environ. 9, 1–6 (2024).
Google Scholar
-
Chakraborty, S. et al. Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2, 837–845 (2017).
Google Scholar
-
Schütter, C., Husch, T., Korth, M. & Balducci, A. Toward new solvents for EDLCs: from computational screening to electrochemical validation. J. Phys. Chem. C 119, 13413–13424 (2015).
Google Scholar
-
Stephens, I. E. et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).
Google Scholar
-
Li, X., Wang, S., Li, L., Sun, Y. & Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142, 9567–9581 (2020).
Google Scholar
-
Moss, A. B. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2023).
Google Scholar
-
Biswas, I. et al. Advancement of segmented cell technology in low temperature hydrogen technologies. Energies 13, 2301 (2020).
Google Scholar
-
Heldebrant, D. J. et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities and outlook. Chem. Rev. 117, 9594–9624 (2017).
Google Scholar
-
Ellebracht, N. C. et al. 3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO2 capture. Energy Environ. Sci. 16, 1752–1762 (2023).
Google Scholar
-
Kvamsdal, H. M. & Rochelle, G. T. Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind. Eng. Chem. Res. 47, 867–875 (2008).
Google Scholar
-
Sun, S. et al. Real-time imaging and holdup measurement of carbon dioxide under CCS conditions using electrical capacitance tomography. IEEE Sens. J. 18, 7551–7559 (2018).
Google Scholar
-
Gouedard, C., Picq, D., Launay, F. & Carrette, P.-L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 10, 244–270 (2012).
Google Scholar
-
Dalton, A., Wolff, K. & Bekker, B. Multidisciplinary research as a complex system. Int. J. Qual. Methods 20, 16094069211038400 (2021).
Google Scholar
-
Singh, R. K. et al. Hydrodynamics of countercurrent flow in an additive-manufactured column with triply periodic minimal surfaces for carbon dioxide capture. Chem. Eng. J. 450, 138124 (2022).
Google Scholar
-
Moore, T., Nguyen, D., Iyer, J., Roy, P. & Stolaroff, J. K. Advanced absorber heat integration via heat exchange packings. AIChE J. 67, e17243 (2021).
Google Scholar
-
Gongora, A. E. et al. Accelerating the design of lattice structures using machine learning. Sci. Rep. 14, 13703 (2024).
Google Scholar
-
Lin, T. Y. et al. Advancing carbon capture from bench to pilot scale using dynamic similitude. Cell Rep. Phys. Sci. 5, 102019 (2024).
Google Scholar
-
Xia, J., Jödecke, M., Pérez-Salado Kamps, Á. & Maurer, G. Solubility of CO2 in (CH3OH + H2O). J. Chem. Eng. Data 49, 1756–1759 (2004).
Google Scholar
Acknowledgements
This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344 and was supported by Laboratory Directed Research and Development (LDRD) funding under project number 22-SI-006 (release number: LLNL-JRNL-860943-DRAFT). We thank C. Lee for drafting the figures.
Author information
Authors and Affiliations
Contributions
S.E.B., C.H. and E.B.D. conceived the work. T.M. and A.A.W. organized the scope of the paper, worked with all authors on the content of each section, developed the introduction and conclusion, and conducted the final edits with equal contributions. A.A.W., T.O. and C.Y. worked on the risk assessment section. T.M., T.Y.L., V.M.E., N.R.C., P.R., A.E.G. and Y.C. worked on the modeling section, with W.L., A.E.G. and A.A. developing the LCA/TEA discussion and B.G., D.I.O., A.E.G. and S.W.C. developing the big data, digital twins and artificial intelligence section. J.D. and H.-Y.J. developed the detailed experimentation section. C.H., M.G. and A.P. developed the CO2 electrolysis section. D.N. developed the CO2 capture section. T.O. developed the perils of premature optimization and oversimplification section. A.S. and S.E.B. developed the section on building a scale-up team. T.M., A.A.W., C.H., S.E.B., D.N. and E.B.D. developed the case study section. All authors contributed to the text and figure edits throughout the entire paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–4 and Tables 1–3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Moore, T., Wong, A.A., Giera, B. et al. Accelerating climate technologies through the science of scale-up.
Nat Chem Eng (2024). https://doi.org/10.1038/s44286-024-00143-0
-
Received: 03 April 2024
-
Accepted: 03 October 2024
-
Published: 18 December 2024
-
DOI: https://doi.org/10.1038/s44286-024-00143-0