Advanced vibrational microscopes for life science


Abstract

Providing molecular fingerprint information, vibrational spectroscopic imaging opens a new window to decipher the function of biomolecules in living systems. While classic vibrational microscopes based on spontaneous Raman scattering or mid-infrared absorption offer rich insights into sample composition, they have very small cross sections or poor spatial resolution. Nonlinear vibrational microscopy, based on coherent Raman scattering or optical photothermal detection of vibrational absorption, overcomes these barriers and enables high-speed and high-sensitivity imaging of chemical bonds in live cells and tissues. Here, we introduce various modalities, including their principles, strengths, weaknesses and data mining methods to the life sciences community. We further provide a guide for prospective users and an outlook on future technological advances.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

/* style specs start */

/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */

Fig. 1: Energy diagrams for advanced vibrational microscopy.
Fig. 2: Various modalities developed for CARS imaging.
Fig. 3: Various modalities developed for SRS imaging.
Fig. 4: Contrast mechanisms of MIP imaging.
Fig. 5: MIP imaging implementations.
Fig. 6: Broad applications of advanced vibrational microscopy to life sciences.

References

  1. Duncan, M. D., Reintjes, J. & Manuccia, T. J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350–352 (1982). CARS microscope using a non-collinear beam geometry.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  2. Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999). Collinear CARS microscope. This paper revived the CARS microscopy field.

    Article 
    CAS 

    Google Scholar 

  3. Cheng, J. X., Volkmer, A., Book, L. D. & Xie, X. S. An epi-detected coherent anti-stokes raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity. J. Phys. Chem. B 105, 1277–1280 (2001). Epi-detected CARS microscope.

    Article 
    CAS 

    Google Scholar 

  4. Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  5. Heuke, S. & Rigneault, H. Coherent Stokes Raman scattering microscopy (CSRS). Nat. Commun. 14, 3337 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  6. Cheng, J. X., Volkmer, A., Book, L. D. & Xie, X. S. Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles. J. Phys. Chem. B 106, 8493–8498 (2002).

    Article 
    CAS 

    Google Scholar 

  7. Wurpel, G. W., Schins, J. M. & Muller, M. Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 27, 1093–1095 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  8. Kee, T. W. & Cicerone, M. T. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 29, 2701–2703 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  9. Camp Jr, C. H. et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics 8, 627–634 (2014). Broadband CARS with high sensitivity.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  10. Volkmer, A., Book, L. D. & Xie, X. S. Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay. Appl. Phys. Lett. 80, 1505–1507 (2002).

    Article 
    CAS 

    Google Scholar 

  11. Hellerer, T., Enejder, A. M. K. & Zumbusch, A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses. Appl. Phys. Lett. 85, 25–27 (2004).

    Article 
    CAS 

    Google Scholar 

  12. Ogilvie, J. P., Beaurepaire, E., Alexandrou, A. & Joffre, M. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 480–482 (2006).

    Article 
    PubMed 

    Google Scholar 

  13. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  14. Hashimoto, K., Takahashi, M., Ideguchi, T. & Goda, K. Broadband coherent Raman spectroscopy running at 24,000 spectra per second. Sci. Rep. 6, 21036 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  15. Kinegawa, R. et al. High-speed broadband Fourier-transform coherent anti-stokes Raman scattering spectral microscopy. J. Raman Spectrosc. 50, 1141–1146 (2019).

    Article 
    CAS 

    Google Scholar 

  16. Heinrich, C., Bernet, S. & Ritsch-Marte, M. Wide-field coherent anti-Stokes Raman scattering microscopy. Appl. Phys. Lett. 84, 816–818 (2004).

    Article 
    CAS 

    Google Scholar 

  17. Toytman, I., Cohn, K., Smith, T., Simanovskii, D. & Palanker, D. Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination. Opt. Lett. 32, 1941–1943 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  18. Heinrich, C., Hofer, A., Bernet, S. & Ritsch-Marte, M. Coherent anti-Stokes Raman scattering microscopy with dynamic speckle illumination. N. J. Phys. 10, 023029 (2008).

    Article 

    Google Scholar 

  19. Shi, K., Li, H., Xu, Q., Psaltis, D. & Liu, Z. Coherent anti-stokes Raman holography for chemically selective single-shot nonscanning 3D imaging. Phys. Rev. Lett. 104, 093902 (2010).

    Article 
    PubMed 

    Google Scholar 

  20. Lei, M., Winterhalder, M., Selm, R. & Zumbusch, A. Video-rate wide-field coherent anti-Stokes Raman scattering microscopy with collinear nonphase-matching illumination. J. Biomed. Opt. 16, 021102 (2011).

    Article 
    PubMed 

    Google Scholar 

  21. Berto, P., Gachet, D., Bon, P., Monneret, S. & Rigneault, H. Wide-field vibrational phase imaging. Phys. Rev. Lett. 109, 093902 (2012).

    Article 
    PubMed 

    Google Scholar 

  22. Zong, C. et al. Wide-field surface-enhanced coherent anti-Stokes Raman scattering microscopy. ACS Photonics 9, 1042–1049 (2022).

    Article 
    CAS 

    Google Scholar 

  23. Fantuzzi, E. M. et al. Wide-field coherent anti-Stokes Raman scattering microscopy using random illuminations. Nat. Photonics 17, 1097–1104 (2023).

    Article 
    CAS 

    Google Scholar 

  24. Ploetz, E., Laimgruber, S., Berner, S., Zinth, W. & Gilch, P. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87, 389–393 (2007). SRS microscope.

    Article 
    CAS 

    Google Scholar 

  25. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). High-speed SRS microscope achieving high-sensitivity biomedical imaging with chemical specificity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  26. Nandakumar, P., Kovalev, A. & Volkmer, A. Vibrational imaging based on stimulated Raman scattering microscopy. N. J. Phys. 11, 033026 (2009).

    Article 

    Google Scholar 

  27. Ozeki, Y., Dake, F., Kajiyama, S. I., Fukui, K. & Itoh, K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 17, 3651–3658 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  28. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  29. Li, H. et al. Imaging chemical kinetics of radical polymerization with an ultrafast coherent Raman microscope. Adv. Sci. 7, 1903644 (2020).

    Article 
    CAS 

    Google Scholar 

  30. Andresen, E. R., Berto, P. & Rigneault, H. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt. Lett. 36, 2387–2389 (2011).

    Article 
    PubMed 

    Google Scholar 

  31. Beier, H. T., Noojin, G. D. & Rockwell, B. A. Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Opt. Express 19, 18885–18892 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  32. Liao, C.-S. et al. Stimulated Raman spectroscopic imaging by microsecond delay-line tuning. Optica 3, 1377–1380 (2016).

    Article 
    CAS 

    Google Scholar 

  33. Lin, H. et al. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. Nat. Commun. 12, 3052 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Alshaykh, M. S. et al. High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines. Opt. Lett. 42, 1548–1551 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  35. Liao, C. S. et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci. Appl. 4, e265 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  36. Fu, D. et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134, 3623–3626 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  37. Suzuki, Y. et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl Acad. Sci. USA 116, 15842–15848 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  38. Karpf, S., Eibl, M., Wieser, W., Klein, T. & Huber, R. A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy. Nat. Commun. 6, 6784 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  39. Ozeki, Y. et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photonics 6, 844–850 (2012).

    Article 

    Google Scholar 

  40. Würthwein, T. et al. Multi-color stimulated Raman scattering with a frame-to-frame wavelength-tunable fiber-based light source. Biomed. Opt. Express 12, 6228–6236 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  41. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  42. Xiong, H. et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photonics 13, 412–417 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  43. Xiong, H. et al. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. Light Sci. Appl. 10, 87 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  44. Ao, J. et al. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nat. Commun. 12, 3089 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  45. Shou, J. et al. Super-resolution vibrational imaging based on photoswitchable Raman probe. Sci. Adv. 9, eade9118 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  46. Ao, J. et al. Photoswitchable vibrational nanoscopy with sub-100-nm optical resolution. Adv. Photonics 5, 066001 (2023).

    Article 

    Google Scholar 

  47. Zong, C. et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat. Commun. 10, 5318 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Zhuge, M. et al. Ultrasensitive vibrational imaging of retinoids by visible preresonance stimulated Raman scattering microscopy. Adv. Sci. 8, 2003136 (2021).

    Article 
    CAS 

    Google Scholar 

  49. Bi, Y. et al. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl. 7, 81 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  50. Koehl, R. M., Adachi, S. & Nelson, K. A. Real-space polariton wave packet imaging. J. Chem. Phys. 110, 1317–1320 (1999).

    Article 
    CAS 

    Google Scholar 

  51. Raanan, D. et al. Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation. Opt. Lett. 44, 5153–5156 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  52. Chen, X. et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nat. Commun. 8, 15117 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  53. Wang, W. & Huang, Z. Stimulated Raman scattering tomography for rapid three-dimensional chemical imaging of cells and tissue. Adv. Photonics 6, 026001 (2024).

    Article 

    Google Scholar 

  54. Robles, F. E., Zhou, K. C., Fischer, M. C. & Warren, W. S. Stimulated Raman scattering spectroscopic optical coherence tomography. Optica 4, 243–246 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  55. Lin, P. et al. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. Opt. Express 28, 30210–30221 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  56. Nose, K. et al. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Opt. Express 20, 13958–13965 (2012).

    Article 
    PubMed 

    Google Scholar 

  57. Freudiger, C. W. et al. Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photonics 8, 153–159 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  58. Crisafi, F. et al. In-line balanced detection stimulated Raman scattering microscopy. Sci. Rep. 7, 10745 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  59. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017). Clinical translation of stimulated Raman histology for intraoperative use.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  60. Liao, C.-S. et al. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope. ACS Photonics 5, 947–954 (2017).

    Article 

    Google Scholar 

  61. Lin, H. & Cheng, J. X. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science. eLight 3, 6 (2023).

    Article 

    Google Scholar 

  62. Zhang, D. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016). MIP imaging of living systems. This paper led to mIRage, a commercial product that is worldwide used.

  63. Li, Z., Aleshire, K., Kuno, M. & Hartland, G. V. Super-resolution far-field infrared imaging by photothermal heterodyne imaging. J. Phys. Chem. B 121, 8838–8846 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  64. Dong, P. T. et al. Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in Candida membrane. Sci. Adv. 7, eabd5230 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  65. Yurdakul, C., Zong, H. N., Bai, Y. R., Cheng, J. X. & Ünlü, M. S. Bond-selective interferometric scattering microscopy. J. Phys. D. 54, 364002 (2021).

    Article 
    CAS 

    Google Scholar 

  66. Xia, Q. et al. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat. Commun. 14, 6655 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  67. Yuan, T., Riobo, L., Gasparin, F., Ntziachristos, V. & Pleitez, M. A. Phase-shifting optothermal microscopy enables live-cell mid-infrared hyperspectral imaging of large cell populations at high confluency. Sci. Adv. 10, eadj7944 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  68. Zhang, D. et al. Bond-selective transient phase imaging via sensing of the infrared photothermal effect. Light Sci. Appl. 8, 116 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  69. Schnell, M. et al. All-digital histopathology by infrared-optical hybrid microscopy. Proc. Natl Acad. Sci. USA 117, 3388–3396 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  70. Toda, K., Tamamitsu, M. & Ideguchi, T. Adaptive dynamic range shift (ADRIFT) quantitative phase imaging. Light Sci. Appl. 10, 1 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  71. Zhang, Y. et al. Fluorescence-detected mid-infrared photothermal microscopy. J. Am. Chem. Soc. 143, 11490–11499 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  72. Li, M. et al. Fluorescence-detected mid-infrared photothermal microscopy. J. Am. Chem. Soc. 143, 10809–10815 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  73. Yin, J. et al. Video-rate mid-infrared photothermal imaging by single-pulse photothermal detection per pixel. Sci. Adv. 9, eadg8814 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. He, H. et al. Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons. Nat. Methods 21, 342–352 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  75. Adhikari, S. et al. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano 14, 16414–16445 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  76. Samolis, P. D. & Sander, M. Y. Phase-sensitive lock-in detection for high-contrast mid-infrared photothermal imaging with sub-diffraction limited resolution. Opt. Express 27, 2643–2655 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  77. Yin, J. et al. Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nat. Commun. 12, 7097 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  78. Samolis, P. D., Zhu, X. & Sander, M. Y. Time-resolved mid-infrared photothermal microscopy for imaging water-embedded axon bundles. Anal. Chem. 95, 16514–16521 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  79. Bai, Y. et al. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Sci. Adv. 5, eaav7127 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  80. Toda, K., Tamamitsu, M., Nagashima, Y., Horisaki, R. & Ideguchi, T. Molecular contrast on phase-contrast microscope. Sci. Rep. 9, 9957 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  81. Ishigane, G. et al. Label-free mid-infrared photothermal live-cell imaging beyond video rate. Light Sci. Appl. 12, 174 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  82. Tamamitsu, M. et al. Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect. Optica 7, 359–366 (2020).

    Article 
    CAS 

    Google Scholar 

  83. Zhao, J. et al. Bond-selective intensity diffraction tomography. Nat. Commun. 13, 7767 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  84. Zhu, Y. et al. Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging. Sci. Adv. 9, eadi2181 (2023). Stimulated Raman photothermal microscope.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  85. Wilson, R. H., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J. & Durkin, A. J. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. J. Biomed. Opt. 20, 030901 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  86. Wang, P., Rajian, J. R. & Cheng, J. X. Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration. J. Phys. Chem. Lett. 4, 2177–2185 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  87. Ni, H. et al. Millimetre-deep micrometre-resolution vibrational imaging by shortwave infrared photothermal microscopy. Nat. Photonics 18, 944–951 (2024). Vibrational photothermal microscope in the short-wave infrared window enabling subcellular-resolution and millimeter-deep chemical imaging.

    Article 
    CAS 

    Google Scholar 

  88. Wang, L. et al. Overtone photothermal microscopy for high-resolution and high-sensitivity vibrational imaging. Nat. Commun. 15, 5374 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  89. Wang, H. W. et al. Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys. Rev. Lett. 106, 238106 (2011). Bond-selective photoacoustic microscope.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  90. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  91. Wang, L. V. & Wu, H. I. Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2012).

  92. Sim, J. Y., Ahn, C. G., Jeong, E. J. & Kim, B. K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep. 8, 1059 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  93. Pleitez, M. A. et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 38, 293–296 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  94. Uluc, N. et al. Non-invasive measurements of blood glucose levels by time-gating mid-infrared optoacoustic signals. Nat. Metab. 6, 678–686 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  95. Shi, J. et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics 13, 609–615 (2019). MIPA microscope.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  96. Xu, Z., Zhu, Q. & Wang, L. V. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury. J. Biomed. Opt. 16, 066020 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  97. Jansen, K., van der Steen, A. F., van Beusekom, H. M., Oosterhuis, J. W. & van Soest, G. Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 36, 597–599 (2011).

    Article 
    PubMed 

    Google Scholar 

  98. Wang, P. et al. High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser. Sci. Rep. 4, 6889 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  99. Li, R. et al. High-speed intraoperative assessment of breast tumor margins by multimodal ultrasound and photoacoustic tomography. Med. Devices Sens. 1, e10018 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  100. Yakovlev, V. V. et al. Stimulated Raman photoacoustic imaging. Proc. Natl Acad. Sci. USA 107, 20335–20339 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  101. Raghunathan, V., Han, Y., Korth, O., Ge, N. H. & Potma, E. O. Rapid vibrational imaging with sum frequency generation microscopy. Opt. Lett. 36, 3891–3893 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  102. Hanninen, A. M., Prince, R. C., Ramos, R., Plikus, M. V. & Potma, E. O. High-resolution infrared imaging of biological samples with third-order sum-frequency generation microscopy. Biomed. Opt. Express 9, 4807–4817 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  103. Whaley-Mayda, L., Guha, A., Penwell, S. B. & Tokmakoff, A. Fluorescence-encoded infrared vibrational spectroscopy with single-molecule sensitivity. J. Am. Chem. Soc. 143, 3060–3064 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  104. Wang, H. et al. Bond-selective fluorescence imaging with single-molecule sensitivity. Nat. Photonics 17, 846–855 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  105. Yan, C. et al. Multidimensional widefield infrared-encoded spontaneous emission microscopy: distinguishing chromophores by ultrashort infrared pulses. J. Am. Chem. Soc. 146, 1874–1886 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  106. Vanden-Hehir, S. et al. Alkyne-tagged PLGA allows direct visualization of nanoparticles in vitro and ex vivo by stimulated Raman scattering microscopy. Biomacromolecules 20, 4008–4014 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  107. Xia, Q. et al. Click-free imaging of carbohydrate trafficking in live cells using an azido photothermal probe. Sci. Adv. 10, eadq0294 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  108. Tague, N. et al. Longitudinal single-cell imaging of engineered strains with stimulated Raman scattering to characterize heterogeneity in fatty acid production. Adv. Sci. 10, e2206519 (2023).

    Article 

    Google Scholar 

  109. Ge, X. et al. SRS-FISH: a high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc. Natl Acad. Sci. USA 119, e2203519119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  110. Zhang, J. et al. Visualization of a limonene synthesis metabolon inside living bacteria by hyperspectral SRS microscopy. Adv. Sci. 9, e2203887 (2022).

    Article 

    Google Scholar 

  111. Wakisaka, Y. et al. Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat. Microbiol. 1, 16124 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  112. Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  113. Zhang, M. et al. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv. Sci. 7, 2001452 (2020).

    Article 
    CAS 

    Google Scholar 

  114. Tan, Y., Lin, H. & Cheng, J. X. Profiling single cancer cell metabolism via high-content SRS imaging with chemical sparsity. Sci. Adv. 9, eadg6061 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  115. Zhao, G. et al. Ovarian cancer cell fate regulation by the dynamics between saturated and unsaturated fatty acids. Proc. Natl Acad. Sci. USA 119, e2203480119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  116. Bai, Y. et al. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat. Commun. 15, 350 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  117. Li, J. et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  118. Zhang, X. et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy. Chemphyschem 13, 1054–1059 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  119. Lu, F. K. et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. Natl Acad. Sci. USA 112, 11624–11629 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  120. Oh, S. et al. Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy. Proc. Natl Acad. Sci. USA 119, e2117938119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  121. Lim, J. M. et al. Cytoplasmic protein imaging with mid-infrared photothermal microscopy: cellular dynamics of live neurons and oligodendrocytes. J. Phys. Chem. Lett. 10, 2857–2861 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  122. Hu, F. et al. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. Int. Ed. Engl. 54, 9821–9825 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  123. Li, Y. et al. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metab. 36, 1351–1370 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  124. Gustavsson, N. et al. Correlative optical photothermal infrared and X-ray fluorescence for chemical imaging of trace elements and relevant molecular structures directly in neurons. Light Sci. Appl. 10, 151 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  125. Klementieva, O. et al. Super-resolution infrared imaging of polymorphic amyloid aggregates directly in neurons. Adv. Sci. 7, 1903004 (2020). Application of MIP microscopy to protein structure analysis.

    Article 
    CAS 

    Google Scholar 

  126. Wang, M. C., Min, W., Freudiger, C. W., Ruvkun, G. & Xie, X. S. RNAi screening for fat regulatory genes with SRS microscopy. Nat. Methods 8, 135–138 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  127. Wang, P. et al. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angew. Chem. Int. Ed. Engl. 53, 11787–11792 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  128. Chen, W. W. et al. Spectroscopic coherent Raman imaging of Caenorhabditis elegans reveals lipid particle diversity. Nat. Chem. Biol. 16, 1087–1095 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  129. Li, Y., Zhang, W., Fung, A. A. & Shi, L. DO-SRS imaging of diet regulated metabolic activities in Drosophila during aging processes. Aging Cell 21, e13586 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  130. Hollon, T. C. et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. 26, 52–58 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  131. Ji, M. et al. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy. Sci. Adv. 4, eaat7715 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  132. Randall, E. C. et al. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat. Commun. 9, 4904 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  133. Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 201ra119 (2013). Use of SRS microscopy for histopathology.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  134. Sethuraman, S., Amirian, J. H., Litovsky, S. H., Smalling, R. W. & Emelianov, S. Y. Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging. Opt. Express 15, 16657–16666 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  135. Wu, W., Wang, P., Cheng, J. X. & Xu, X. M. Assessment of white matter loss using bond-selective photoacoustic imaging in a rat model of contusive spinal cord injury. J. Neurotrauma 31, 1998–2002 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  136. Tian, F. et al. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat. Commun. 7, 13283 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  137. Wang, B. et al. In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis. Ultrasound Med. Biol. 38, 2098–2103 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  138. Li, M. et al. Ultrasensitive in vivo infrared spectroscopic imaging via oblique photothermal microscopy. Preprint at bioRxiv https://doi.org/10.1101/2024.10.02.616360 (2024).

  139. Wei, L. et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11, 410–412 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  140. Shi, L. et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat. Biotechnol. 40, 364–373 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  141. Kamp, M. et al. Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues. Nat. Commun. 15, 5386 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  142. Liu, X., Shi, L., Zhao, Z., Shu, J. & Min, W. VIBRANT: spectral profiling for single-cell drug responses. Nat. Methods 21, 501–511 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  143. Su, Y. et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 17, 76–85 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  144. Wei, M. et al. [Review on vibrational probes.] Nat. Methods https://doi.org/xxx (2025).

  145. Fournier, D., Lepoutre, F. & Boccara, A. C. Tomographic approach for photothermal imaging using the mirage effect. J. Phys. Colloq. 44, C6-479–C476-482 (1983).

    Article 

    Google Scholar 

  146. Furstenberg, R, Kendziora, C. A., Papantonakis, M. R., Nguyen, V., & McGill, R. A. Chemical imaging using infrared photothermal microspectroscopy. in Proceedings of SPIE Defense, Security, and Sensing 8374, 837411 (2012).

  147. Bai, Y., Yin, J. & Cheng, J. -X. Bond-selective imaging by optically sensing the mid-infrared photothermal effect. Sci. Adv. 7, eabg1559 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  148. Xia, Q., Yin, J., Guo, Z. & Cheng, J. -X. Mid-infrared photothermal microscopy: principle, instrumentation, applications. J. Phys. Chem. B 126, 8597–8613 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  149. Product news. Microscope improves infrared spectroscopy. J. Fail. Anal. Prev. 18, 250–251 (2018).

    Google Scholar 

  150. Fu, P. C. et al. Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy. Nat. Photonics 17, 330–337 (2023).

    Article 
    CAS 

    Google Scholar 

  151. Tamamitsu, M. et al. Mid-infrared wide-field nanoscopy. Nat. Photonics 18, 738–743 (2024).

    Article 
    CAS 

    Google Scholar 

Download references

Acknowledgements

We acknowledge grants from the National Institutes of Health (R35 GM136223, R01 EB032391, R01 EB035429, R01 AI141439, R01 CA224275 and R33CA287046) and the Chan Zuckerberg Initiative DAF (2023-321163), an advised fund of Silicon Valley Community Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.-X.C. drafted the outline, introduction, outlook and two boxes. Y.Y. drafted the CARS section. H.N. drafted the SRS and SWIP sections. J.A. drafted the data science section. R.B. and Q.X. drafted the MIP section. X.G. and H.N. drafted the SRP and SWIP section. Q.X., J.A. and Y.Y. drafted the applications and user guide section. J.A., Q.X. and Y.Y. contributed to manuscript revision.

Corresponding author

Correspondence to
Ji-Xin Cheng.

Ethics declarations

Competing interests

J.-X.C. declares competing interests with VibroniX and Photothermal Spectroscopy, which did not fund this work. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Caitlin Davis, Vladislav Yakovlev, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes and Supplementary Tables 1–5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JX., Yuan, Y., Ni, H. et al. Advanced vibrational microscopes for life science.
Nat Methods 22, 912–927 (2025). https://doi.org/10.1038/s41592-025-02655-w

Download citation

  • Received: 07 July 2024

  • Accepted: 04 March 2025

  • Published: 13 May 2025

  • Issue Date: May 2025

  • DOI: https://doi.org/10.1038/s41592-025-02655-w


Leave a Reply

Your email address will not be published. Required fields are marked *