Abstract
The protection of headwater streams faces increasing challenges, exemplified by limited global recognition of headwater contributions to watershed resiliency and a recent US Supreme Court decision limiting federal safeguards. Despite accounting for ~77% of global river networks, the lack of adequate headwaters protections is caused, in part, by limited information on their extent and functions—in particular, their flow regimes, which form the foundation for decision-making regarding their protection. Yet, headwater streamflow is challenging to comprehensively measure and model; it is highly variable and sensitive to changes in land use, management and climate. Modelling headwater streamflow to quantify its cumulative contributions to downstream river networks requires an integrative understanding across local hillslope and channel (that is, watershed) processes. Here we begin to address this challenge by proposing a consistent definition for headwater systems and streams, evaluating how headwater streamflow is characterized and advocating for closing gaps in headwater streamflow data collection, modelling and synthesis.
This is a preview of subscription content, access via your institution
Access options
/* style specs end */
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */





References
-
Common Implementation Strategy for the Water Framework Directive—Guidance Document No. 2: Identification of Water Bodies ISBN 92-894-5122-X (European Commission, 2003).
-
Sackett versus Environmental Protection Agency, 25 May 2023 (Supreme Court of the United States, 2023); https://www.supremecourt.gov/opinions/22pdf/21-454_4g15.pdf
-
Sitati, A., Yegon, M. J., Masese, F. O. & Graf, W. Ecological importance of low-order streams to macroinvertebrate community composition in Afromontane headwater streams. Environ. Sustain. Indic. 21, 100330 (2024).
-
Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017).
Google Scholar
-
Messager, M. L., Pella, H. & Datry, T. Inconsistent regulatory mapping quietly threatens rivers and streams. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.4c01859 (2024).
-
Downing, J. A. et al. Global abundance and size distribution of streams and rivers. Inland Waters 2, 229–236 (2012).
Google Scholar
-
Lane, C. R. et al. Vulnerable waters are essential to watershed resilience. Ecosystems 26, 1–28 (2023).
Google Scholar
-
Li, L. et al. Toward catchment hydro-biogeochemical theories. WIREs Water 8, e1495 (2021).
Google Scholar
-
Alexander, R. B. et al. Differences in sources and recent trends in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River and Atchafalaya River Basins. Environ. Sci. Technol. 42, 822–830 (2007).
Google Scholar
-
Rupp, D. E., Chegwidden, O. S., Nijssen, B. & Clark, M. P. Changing river network synchrony modulates projected increases in high flows. Water Resour. Res. 57, e2020WR028713 (2021).
Google Scholar
-
Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. N. Am. Benthol. Soc. 30, 963–980 (2011).
Google Scholar
-
Lowe, W. H. & Likens, G. E. Moving headwater streams to the head of the class. BioScience 55, 196–197 (2005).
Google Scholar
-
Colvin, S. A. R. et al. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries 44, 73–91 (2019).
Google Scholar
-
Revised Definition of “Waters of the United States”; Conforming, A Rule by The Engineers Corps and the Environmental Protection Agency on 09/08/2023 (Federal Register, 2023); https://www.federalregister.gov/documents/2023/09/08/2023-18929/revised-definition-of-waters-of-the-united-states-conforming
-
Arce, M. I. et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth Sci. Rev. 188, 441–453 (2019).
Google Scholar
-
Brinkerhoff, C. B., Gleason, C. J., Kotchen, M. J., Kysar, D. A. & Raymond, P. A. Ephemeral stream water contributions to United States drainage networks. Science 384, 1476–1482 (2024).
Google Scholar
-
Harvey, J. W. & Kampf, S. K. The transitory origins of rivers. Science 384, 1402–1403 (2024).
Google Scholar
-
Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).
Google Scholar
-
Freeman, M. C., Pringle, C. M. & Jackson, C. R. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. J. Am. Water Resour. Assoc. 43, 5–14 (2007).
Google Scholar
-
Liu, S. et al. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).
Google Scholar
-
McDonnell, J. J. et al. Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour. Res. https://doi.org/10.1029/2006WR005467 (2007).
-
Richardson, J. S. & Danehy, R. J. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. For. Sci. 53, 131–147 (2007).
-
Allen, G. H. et al. Similarity of stream width distributions across headwater systems. Nat. Commun. 9, 610 (2018).
Google Scholar
-
Clark, M. P. et al. Framework for Understanding Structural Errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resour. Res. https://doi.org/10.1029/2007WR006735 (2008).
-
Marx, A. et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Rev. Geophys. 55, 560–585 (2017).
Google Scholar
-
Gomi, T., Sidle, R. C. & Richardson, J. S. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land use. BioScience 52, 905–916 (2002).
Google Scholar
-
Imberger, M. et al. Headwater streams in an urbanizing world. Freshw. Sci. 42, 323–336 (2023).
Google Scholar
-
Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).
Google Scholar
-
Wohl, E. The Upstream Extent of a River Network: A Review of Scientific Knowledge of Channel Heads (US Army Corps of Engineers, Engineer Research and Development Center, CR-18-1, 2018); https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/27410/1/ERDC-CRREL%20CR-18-1.pdf
-
Montgomery, D. R. & Dietrich, W. E. Where do channels begin? Nature 336, 232–234 (1988).
Google Scholar
-
Montgomery, D. R. & Dietrich, W. E. Source areas, drainage density, and channel initiation. Water Resour. Res. 25, 1907–1918 (1989).
Google Scholar
-
Covino, T. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology 277, 133–144 (2017).
Google Scholar
-
The NHDPlus High Resolution (NHDPlus HR) Dataset (US Geological Survey, 2023); https://www.usgs.gov/national-hydrography/access-national-hydrography-products
-
Nadeau, T.-L. & Rains, M. C. Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. J. Am. Water Resour. Assoc. 43, 118–133 (2007).
Google Scholar
-
National Hydro Network – NHN – GeoBase Series (Natural Resources Canada, 2024); https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977
-
UKCEH Digital River Network of Great Britain (1:50,000) (UK Centre for Ecology and Hydrology, Environmental Information Data Centre, 2024); https://catalogue.ceh.ac.uk/documents/7d5e42b6-7729-46c8-99e9-f9e4efddde1d
-
EU-Hydro River Network Database 2006–2012 (Vector), Europe (EU-Hydro, 2024); https://doi.org/10.2909/393359a7-7ebd-4a52-80ac-1a18d5f3db9c
-
Christensen, J. R. et al. Headwater streams and inland wetlands: status and advancements of geospatial datasets and maps across the United States. Earth Sci. Rev. 235, 104230 (2022).
Google Scholar
-
Fritz, K. M. et al. Comparing the extent and permanence of headwater streams from two field surveys to values from hydrographic databases and maps. J. Am. Water Resour. Assoc. 49, 867–882 (2013).
Google Scholar
-
Lin, P., Pan, M., Wood, E. F., Yamazaki, D. & Allen, G. H. A new vector-based global river network dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).
Google Scholar
-
Observatoire national des étiages (L’Office Français de la Biodiversité, 2023); https://onde.eaufrance.fr/
-
Final Rule: Revised Definition of “Waters of the United States” Conforming, 88 FR 61964, Docket ID No. EPA–HQ–OW–2023–0346 (US Department of Defense Corps of Engineers and the Environmental Protection Agency, 2023); https://www.govinfo.gov/content/pkg/FR-2023-01-18/pdf/2022-28595.pdf
-
Hewlett, J. D. & Hibbert, A. R. in International Symposium on Forest Hydrology (eds Sopper W. E. & Lull H. W.) 275–290 (Pergamon, 1967).
-
Zhang, L. et al. CHOSEN: a synthesis of hydrometeorological data from intensively monitored catchments and comparative analysis of hydrologic extremes. Hydrol. Processes 35, e14429 (2021).
Google Scholar
-
Horton, R. E. Hydrologic interrelations of water and soils. Soil Sci. Soc. Am. J. 1, 401–429 (1937).
Google Scholar
-
Jones, J. A. et al. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. BioScience 62, 390–404 (2012).
Google Scholar
-
Wlostowski, A. N. et al. Signatures of hydrologic function across the critical zone observatory network. Water Resour. Res. 57, e2019WR026635 (2021).
Google Scholar
-
Datry, T. et al. Non-perennial segments in river networks. Nat. Rev. Earth Environ. 4, 815–830 (2023).
Google Scholar
-
Fritz, K., Cid, N. & Autrey, B. in Intermittent Rivers and Ephemeral Streams (eds Datry, T. et al.) 477–507 (Academic Press, 2017).
-
McMillan, H., Araki, R., Gnann, S., Woods, R. & Wagener, T. How do hydrologists perceive watersheds? A survey and analysis of perceptual model figures for experimental watersheds. Hydrol. Processes 37, e14845 (2023).
Google Scholar
-
Burt, T. P. & McDonnell, J. J. Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resour. Res. 51, 5919–5928 (2015).
Google Scholar
-
Van Stan, J. T. et al. Shower thoughts: why scientists should spend more time in the rain. BioScience 73, 441–452 (2023).
Google Scholar
-
Likens, G. E. The Runoff of Water and Nutrients from Watersheds Tributary to Cayuga Lake, New York Report No. 81 (Cornell University Water Resources and Marine Center, 1974).
-
van Meerveld, H. J., Seibert, J. & Peters, N. E. Hillslope–riparian-stream connectivity and flow directions at the Panola Mountain Research Watershed. Hydrol. Processes 29, 3556–3574 (2015).
Google Scholar
-
Allen, S. T., Keim, R. F., Barnard, H. R., McDonnell, J. J. & Renée Brooks, J. The role of stable isotopes in understanding rainfall interception processes: a review. WIREs Water 4, e1187 (2017).
Google Scholar
-
Boano, F. et al. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev. Geophys. 52, 603–679 (2014).
Google Scholar
-
Younger, S. E., Cannon, J. B. & Brantley, S. T. Impacts of longleaf pine (Pinus palustris Mill.) on long-term hydrology at the watershed scale. Sci. Total Environ. 902, 165999 (2023).
Google Scholar
-
Hrachowitz, M. et al. A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrol. Sci. J. 58, 1198–1255 (2013).
Google Scholar
-
Chapin, T. P., Todd, A. S. & Zeigler, M. P. Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring. Water Resour. Res. 50, 6542–6548 (2014).
Google Scholar
-
Jaeger, K. L. & Olden, J. D. Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res. Appl. 28, 1843–1852 (2012).
Google Scholar
-
Jensen, C. K., McGuire, K. J., McLaughlin, D. L. & Scott, D. T. Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors. Environ. Monit. Assess. 191, 226 (2019).
Google Scholar
-
Keys, T. A., Jones, C. N., Scott, D. T. & Chuquin, D. A cost-effective image processing approach for analyzing the ecohydrology of river corridors. Limnol. Oceanogr. Methods 14, 359–369 (2016).
Google Scholar
-
Noto, S. et al. Technical note: low cost stage-camera system for continuous water level monitoring in ephemeral streams. Hydrol. Earth Syst. Sci. Discuss. 2021, 1–17 (2021).
-
Gilmore, T. E., Birgand, F. & Chapman, K. W. Source and magnitude of error in an inexpensive image-based water level measurement system. J. Hydrol. 496, 178–186 (2013).
Google Scholar
-
Epting, S. M. et al. Landscape metrics as predictors of hydrologic connectivity between Coastal Plain forested wetlands and streams. Hydrol. Processes 32, 516–532 (2018).
Google Scholar
-
Assendelft, R. S. & van Meerveld, H. J. I. A low-cost, multi-sensor system to monitor temporary stream dynamics in mountainous headwater catchments. Sensors 19, 4645 (2019).
Google Scholar
-
Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).
Google Scholar
-
Helm, C., Hassan, M. A. & Reid, D. Characterization of morphological units in a small, forested stream using close-range remotely piloted aircraft imagery. Earth Surf. Dynam. 8, 913–929 (2020).
Google Scholar
-
Dralle, D. N., Lapides, D. A., Rempe, D. M. & Hahm, W. J. Mapping surface water presence and hyporheic flow properties of headwater stream networks with multispectral satellite imagery. Water Resour. Res. 59, e2022WR034169 (2023).
Google Scholar
-
Fernandez, N., Camacho, L. A. & Nejadhashemi, A. P. Modeling streamflow in headwater catchments: a data-based mechanistic grounded framework. J. Hydrol. Reg. Stud. 44, 101243 (2022).
Google Scholar
-
National Water Information System Data Available on the World Wide Web (USGS Water Data for the Nation) (US Geological Survey, 2023); http://waterdata.usgs.gov/nwis/
-
Hammond, J. C. et al. Spatial patterns and drivers of non-perennial flow regimes in the contiguous U.S. Geophys. Res. Lett. 48, 2020GL090794 (2021).
Google Scholar
-
Price, A. N., Jones, C. N., Hammond, J. C., Zimmer, M. A. & Zipper, S. C. The drying regimes of non-perennial rivers and streams. Geophys. Res. Lett. 48, e2021GL093298 (2021).
Google Scholar
-
Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshw. Sci. 38, 244–256 (2019).
Google Scholar
-
Kratzert, F. et al. Caravan—a global community dataset for large-sample hydrology. Sci. Data 10, 61 (2023).
Google Scholar
-
Seibert, J. & van Meerveld, H. J. Bridge over changing waters—citizen science for detecting the impacts of climate change on water. PLoS Clim. 1, e0000088 (2022).
Google Scholar
-
Jaeger, K. L. et al. Probability of Streamflow Permanence Model (PROSPER): a spatially continuous model of annual streamflow permanence throughout the Pacific Northwest. J. Hydrol. X 2, 100005 (2019).
-
Shi, Y., Davis, K. J., Duffy, C. J. & Yu, X. Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory. J. Hydrometeorol. 14, 1401–1420 (2013).
Google Scholar
-
Wigmosta, M. S., Vail, L. W. & Lettenmaier, D. P. A distributed hydrology–vegetation model for complex terrain. Water Resour. Res. 30, 1665–1679 (1994).
Google Scholar
-
Durighetto, N. et al. Probabilistic description of streamflow and active length regimes in rivers. Water Resour. Res. 58, e2021WR031344 (2022).
Google Scholar
-
Paniconi, C. & Putti, M. Physically based modeling in catchment hydrology at 50: survey and outlook. Water Resour. Res. 51, 7090–7129 (2015).
Google Scholar
-
Tague, C. L. & Band, L. E. RHESSys: Regional Hydro-Ecologic Simulation System—an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact. 8, 1–42 (2004).
Google Scholar
-
Beck, H. E. et al. Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments. J. Geophys. Res. Atmos. 125, e2019JD031485 (2020).
Google Scholar
-
Razavi, T. & Coulibaly, P. Streamflow prediction in ungauged basins: review of regionalization methods. J. Hydrol. Eng. 18, 958–975 (2013).
Google Scholar
-
Clark, M. P. et al. Improving the representation of hydrologic processes in Earth System Models. Water Resour. Res. 51, 5929–5956 (2015).
Google Scholar
-
Maxwell, R. M. et al. Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 50, 1531–1549 (2014).
Google Scholar
-
Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).
Google Scholar
-
Pushpalatha, R., Perrin, C., Moine, N. L. & Andréassian, V. A review of efficiency criteria suitable for evaluating low-flow simulations. J. Hydrol. 420-421, 171–182 (2012).
Google Scholar
-
Miller, M. P., Carlisle, D. M., Wolock, D. M. & Wieczorek, M. A database of natural monthly streamflow estimates from 1950 to 2015 for the conterminous United States. J. Am. Water Resour. Assoc. 54, 1258–1269 (2018).
Google Scholar
-
PRISM Gridded Climate Data, Oregon State University (PRISM Climate Group, 2023); https://prism.oregonstate.edu/
-
McMillan, H. et al. When good signatures go bad: applying hydrologic signatures in large sample studies. Hydrol. Processes 37, e14987 (2023).
Google Scholar
-
The National Water Model (NOAA, 2023); https://water.noaa.gov/about/nwm
-
Regan, R. S. et al. in Description of the National Hydrologic Model for Use with the Precipitation-Runoff Modeling System (PRMS) Book 6, Ch. B9, 38 (US Geological Survey, 2018); https://doi.org/10.3133/tm6B9
-
McMillan, H. K., Booker, D. J. & Cattoën, C. Validation of a national hydrological model. J. Hydrol. 541, 800–815 (2016).
Google Scholar
-
Wagener, T., Sivapalan, M., Troch, P. & Woods, R. A. Catchment classification and hydrologic similarity. Geogr. Compass 1/4, 901–931 (2007).
Google Scholar
-
Bergström, S. The HBV-Model—Its Structure and Applications (SMHI, 1992).
-
Nearing, G. S. et al. What role does hydrological science play in the age of machine learning? Water Resour. Res. 57, e2020WR028091 (2021).
Google Scholar
-
Atkinson, S. E., Sivapalan, M., Woods, R. A. & Viney, N. R. Dominant physical controls on hourly flow predictions and the role of spatial variability: Mahurangi catchment, New Zealand. Adv. Water Res. 26, 219–235 (2003).
Google Scholar
-
Fenicia, F., McDonnell, J. J. & Savenije, H. H. G. Learning from model improvement: on the contribution of complementary data to process understanding. Water Resour. Res. https://doi.org/10.1029/2007WR006386 (2008).
-
Wrede, S. et al. Towards more systematic perceptual model development: a case study using 3 Luxembourgish catchments. Hydrol. Processes 29, 2731–2750 (2015).
Google Scholar
-
Peters, N. E., Freer, J. & Beven, K. Modelling hydrologic responses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL. Hydrol. Processes 17, 345–362 (2003).
Google Scholar
-
Schofield, K. A. et al. Biota connect aquatic habitats throughout freshwater ecosystem mosaics. J. Am. Water Resour. Assoc. 54, 372–399 (2018).
Google Scholar
-
Amatulli, G. et al. Hydrography90m: a new high-resolution global hydrographic dataset. Earth Syst. Sci. Data 14, 4525–4550 (2022).
Google Scholar
-
National Science Foundation NEON data. National Ecological Observatory Network https://www.neonscience.org/ (2024).
-
Shen, Q., Cong, Z. & Lei, H. Evaluating the impact of climate and underlying surface change on runoff within the Budyko framework: a study across 224 catchments in China. J. Hydrol. 554, 251–262 (2017).
Google Scholar
-
Sit, M. et al. A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol. 82, 2635–2670 (2020).
Google Scholar
-
Shen, C., Chen, X. & Laloy, E. Editorial: broadening the use of machine learning in hydrology. Front. Water https://doi.org/10.3389/frwa.2021.681023 (2021).
-
Liu, Y., Duffy, K., Dy, J. G. & Ganguly, A. R. Explainable deep learning for insights in El Niño and river flows. Nat. Commun. 14, 339 (2023).
Google Scholar
-
Shen, C. et al. Differentiable modelling to unify machine learning and physical models for geosciences. Nat. Rev. Earth Environ. 4, 552–567 (2023).
Google Scholar
-
Arora, B. et al. Building cross-site and cross-network collaborations in critical zone science. J. Hydrol. 618, 129248 (2023).
Google Scholar
-
Consortion of Universities for the Advancement of Hydrologic Science, HydroShare online data, model, and code sharing environment. CUASHI https://www.hydroshare.org/ (2023).
-
Jaeger, K. L. et al. Beyond streamflow: call for a national data repository of streamflow presence for streams and rivers in the United States. Water 13, 1627 (2021).
Google Scholar
-
Addor, N., Newman, A. J., Mizukami, N. & Clark, M. P. The CAMELS data set: catchment attributes and meteorology for large-sample studies. Hydrol. Earth Syst. Sci. 21, 5293–5313 (2017).
Google Scholar
-
Newman, A. et al. CAMELS: Catchment Attributes and MEeorology for Large-sample Studies. Version 1.2 (UCAR, NCAR, GDEX, 2022); https://doi.org/10.5065/D6MW2F4D
-
Doyle, M. W. & Bernhardt, E. S. What is a stream? Environ. Sci. Technol. 45, 354–359 (2011).
Google Scholar
-
Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Processes 27, 2171–2186 (2013).
Google Scholar
-
Kratzert, F. et al. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 23, 5089–5110 (2019).
Google Scholar
-
Ouyang, W. et al. Continental-scale streamflow modeling of basins with reservoirs: towards a coherent deep-learning-based strategy. J. Hydrol. 599, 126455 (2021).
Google Scholar
-
Falcone, J. A. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow (US Geological Survey, 2011); https://doi.org/10.3133/70046617
-
Cartographic boundary files. US Census Bureau https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html (2023).
-
National Water Information System, USGS Water Data for the Nation. US Geological Survey http://nwis.waterdata.usgs.gov/nwis (2023).
Acknowledgements
This work developed from discussions at the Headwater Modeling Research Working Group, held at the John Wesley Powell Center for Analysis and Synthesis, funded in kind by the US Geological Survey and directly by US Environmental Protection Agency’s Office of Research and Development. We thank E. D’Amico for graphical assistance and K. Fritz and B. Johnson for helpful feedback. Some data were provided by the H.J. Andrews Experimental Forest and Long Term Ecological Research (LTER) programme under the NSF grant LTER8 DEB-2025755. The views expressed in this Perspective are those of the authors and do not necessarily reflect the views or policies of the US EPA. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Water thanks Laurel Larsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text, Figs. 1–4 and Tables 1 and 2.
Rights and permissions
Reprints and permissions
About this article
Cite this article
Golden, H.E., Christensen, J.R., McMillan, H.K. et al. Advancing the science of headwater streamflow for global water protection.
Nat Water (2025). https://doi.org/10.1038/s44221-024-00351-1
-
Received: 22 February 2024
-
Accepted: 06 November 2024
-
Published: 02 January 2025
-
DOI: https://doi.org/10.1038/s44221-024-00351-1