Abstract
Many microorganisms live in the form of a biofilm. Although they are feared in the medical sector, biofilms that are composed of non-pathogenic organisms can be highly beneficial in many applications, including the production of bulk and fine chemicals. Biofilm systems are natural retentostats in which the biocatalysts can adapt and optimize their metabolism to different conditions over time. The adherent nature of biofilms allows them to be used in continuous systems in which the hydraulic retention time is much shorter than the doubling time of the biocatalysts. Moreover, the resilience of organisms growing in biofilms, together with the potential of uncoupling growth from catalytic activity, offers a wide range of opportunities. The ability to work with continuous systems using a potentially self-advancing whole-cell biocatalyst is attracting interest from a range of disciplines, from applied microbiology to materials science and from bioengineering to process engineering. The field of beneficial biofilms is rapidly evolving, with an increasing number of applications being explored, and the surge in demand for sustainable and biobased solutions and processes is accelerating advances in the field. This Review provides an overview of the research topics, challenges, applications and future directions in beneficial and applied biofilm research.
This is a preview of subscription content, access via your institution
Access options
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
-
Muffler, K. & Ulber, R. Productive biofilms. Adv. Biochem. Eng. Biotechnol. 146, 264 (2014).
-
Jo, J., Price-Whelan, A. & Dietrich, L. E. P. Gradients and consequences of heterogeneity in biofilms. Nat. Rev. Microbiol. 20, 593–607 (2022).
Google Scholar
-
Halan, B., Buehler, K. & Schmid, A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol. 30, 453–465 (2012).
Google Scholar
-
Schmeckebier, A., Zayed, A. & Ulber, R. Productive biofilms: from prokaryotic to eukaryotic systems. J. Chem. Technol. Biotechnol. 97, 3049–3064 (2022).
Google Scholar
-
Rosche, B., Li, X. Z., Hauer, B., Schmid, A. & Buehler, K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol. 27, 636–643 (2009).
Google Scholar
-
Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M. & Gardner, R. D. Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res. 54, 102200 (2021).
Google Scholar
-
Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).
Google Scholar
-
Park, H., Schwartzman, A. F., Tang, T.-C., Wang, L. & Lu, T. K. Ultra-lightweight living structural material for enhanced stiffness and environmental sensing. Mater. Today Bio 18, 100504 (2023).
Google Scholar
-
Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 28, 668–681 (2020).
Google Scholar
-
Flemming, H. C. et al. The biofilm matrix: multitasking in a shared space. Nat. Rev. Microbiol. 21, 70–86 (2022).
Google Scholar
-
Edwards, S. J. & Kjellerup, B. V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 97, 9909–9921 (2013).
Google Scholar
-
Härrer, D., Elreedy, A., Ali, R., Hille-Reichel, A. & Gescher, J. Probing the robustness of Geobacter sulfurreducens against fermentation hydrolysate for uses in bioelectrochemical systems. Bioresour. Technol. 369, 128363 (2023).
Google Scholar
-
Morgan-Sagastume, F. Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. Crit. Rev. Env. Sci. Technol. 48, 439–470 (2018).
Google Scholar
-
Grießmeier, V., Wienhöfer, J., Horn, H. & Gescher, J. Assessing and modeling biocatalysis in field denitrification beds reveals key influencing factors for future constructions. Water Res. 188, 116467 (2021).
Google Scholar
-
Lepine, C., Christianson, L., Davidson, J. & Summerfelt, S. Woodchip bioreactors as treatment for recirculating aquaculture systems’ wastewater: a cost assessment of nitrogen removal. Aquacult. Eng. 83, 85–92 (2018).
Google Scholar
-
Rittmann, B. E. Biofilms, active substrata, and me. Water Res. 132, 135–145 (2018).
Google Scholar
-
Bruin, L. M. M., de, Kreuk, M. K., de, Roest, H. F. R., van der, Uijterlinde, C. & van Loosdrecht, M. C. M. Aerobic granular sludge technology: an alternative to activated sludge? Water Sci. Technol. 49, 1–7 (2004).
Google Scholar
-
Tang, C. et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res. 45, 135–144 (2011).
Google Scholar
-
van de Graaf, A. A. et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251 (1995).
Google Scholar
-
Liu, C. et al. Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. Water Res. 194, 116963 (2021).
Google Scholar
-
Dorias, B., Hauber, G. & Baumann, P. in Biotechnology: Environmental Processes I Vol. 11, 2nd edn, Ch. 16 (eds Rehm, H.-J. & Reed, G.) (Wiley, 1999)
-
Wang, J., Liang, J., Ning, D., Zhang, T. & Wang, M. A review of biomass immobilization in anammox and partial nitrification/anammox systems: advances, issues, and future perspectives. Sci. Total. Environ. 821, 152792 (2022).
Google Scholar
-
Ebner, H., Sellmer, S. & Follmann, H. in Biotechnology: Products of Primary Metabolism 2nd edn, Ch. 12 (eds Rehm, H.‐J. & Reed, G.) 381–401 (Wiley, 1996).
-
König, H. in Biotechnology Set 2nd edn (eds Rehm, H.‐J. & Reed, G.) 249–264 (Wiley, 2001).
-
Yuan, Q., Jia, Z., Roots, P. & Wells, G. A strategy for fast anammox biofilm formation under mainstream conditions. Chemosphere 318, 137955 (2023).
Google Scholar
-
Riesenberg, D. & Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51, 422–430 (1999).
Google Scholar
-
Shiloach, J. & Fass, R. Growing E. coli to high cell density—a historical perspective on method development. Biotechnol. Adv. 23, 345–357 (2005).
Google Scholar
-
Shukla, S. K., Manobala, T., Rao, T. S., Shukla, S. K. & Rao, T. S. in Immobilization Strategies (eds Tripathi, A. & Melo, J. S.) 535–555 (Springer, 2021).
-
Morgan-Sagastume, J. M. & Noyola, A. Evaluation of an aerobic submerged filter packed with volcanic scoria. Bioresour. Technol. 99, 2528–2536 (2008).
Google Scholar
-
Cuny, L. et al. Evaluation of productive biofilms for continuous lactic acid production. Biotechnol. Bioeng. 116, 2687–2697 (2019).
Google Scholar
-
Zhang, Q. et al. Mechanical resilience of biofilms toward environmental perturbations mediated by extracellular matrix. Adv. Funct. Mater. 32, 2110699 (2022).
Google Scholar
-
Ciofu, O., Moser, C., Jensen, P. Ø. & Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).
Google Scholar
-
Halan, B., Schmid, A. & Buehler, K. Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl. Environ. Microb. 77, 1563–1571 (2011).
Google Scholar
-
Mishra, S. et al. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 294, 133609 (2022).
Google Scholar
-
Darmon, E. & Leach, D. R. F. Bacterial genome instability. Microbiol. Mol. Biol. Rev. 78, 1–39 (2014).
Google Scholar
-
Fraser, C., Alm, E. J., Polz, M. F., Spratt, B. G. & Hanage, W. P. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741–746 (2009).
Google Scholar
-
Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536, 165–170 (2016).
Google Scholar
-
Renda, B. A., Hammerling, M. J. & Barrick, J. E. Engineering reduced evolutionary potential for synthetic biology. Mol. BioSyst. 10, 1668–1678 (2014).
Google Scholar
-
Akeno, Y., Ying, B. W., Tsuru, S. & Yomo, T. A reduced genome decreases the host carrying capacity for foreign DNA. Microb. Cell Fact. 13, 49 (2014).
Google Scholar
-
Lieder, S., Nikel, P. I., Lorenzo, Vde & Takors, R. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb. Cell Fact. 14, 23 (2015).
Google Scholar
-
Umenhoffer, K. et al. Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb. Cell Fact. 9, 38 (2010).
Google Scholar
-
Csörgo, B., Fehér, T., Tímár, E., Blattner, F. R. & Pósfai, G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb. Cell Fact. 11, 11 (2012).
Google Scholar
-
Xia, Y. et al. Coupled CFD‐DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions. Biotechnol. Bioeng. 119, 2551 (2022).
Google Scholar
-
Lewandowski, Z. & Beyenal, H. Fundamentals of Biofilm Research (CRC Press, 2017).
-
Waharte, F., Steenkeste, K., Briandet, R. & Fontaine-Aupart, M. P. Diffusion measurements inside biofilms by image-based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope. Appl. Environ. Microbiol. 76, 5860–5869 (2010).
Google Scholar
-
Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).
Google Scholar
-
Hauth, J., Chodorski, J., Wirsen, A. & Ulber, R. Improved FRAP measurements on biofilms. Biophys. J. 118, 2354–2365 (2020).
Google Scholar
-
van den Berg, L., van Loosdrecht, M. C. M. & de Kreuk, M. K. How to measure diffusion coefficients in biofilms: a critical analysis. Biotechnol. Bioeng. 118, 1273–1285 (2021).
Google Scholar
-
Kumar, A. et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371–380 (2010).
Google Scholar
-
Lee, S. H. et al. Higher biomass productivity of microalgae in an attached growth system, using wastewater. J. Microbiol. Biotechnol. 24, 1566–1573 (2014).
Google Scholar
-
Scherer, K., Stiefelmaier, J., Strieth, D., Wahl, M. & Ulber, R. Development of a lightweight multi-skin sheet photobioreactor for future cultivation of phototrophic biofilms on facades. J. Biotechnol. 320, 28–35 (2020).
Google Scholar
-
Al-Kaidy, H. et al. Biotechnology and bioprocess engineering – from the first Ullmann’s article to recent trends. ChemBioEng Rev. 2, 175–184 (2015).
Google Scholar
-
Kashid, M. N., Harshe, Y. M. & Agar, D. W. Liquid–liquid slug flow in a capillary: an alternative to suspended drop or film contactors. Ind. Eng. Chem. Res. 46, 8420–8430 (2007).
Google Scholar
-
Karande, R., Halan, B., Schmid, A. & Buehler, K. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnol. Bioeng. 111, 1831–1840 (2014).
Google Scholar
-
Gross, R., Buehler, K. & Schmid, A. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol. Bioeng. 110, 424–436 (2013).
Google Scholar
-
Hoschek, A. et al. Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol. Bioresour. Technol. 282, 171–178 (2019).
Google Scholar
-
Dong, H., Zhang, W., Zhou, S., Ying, H. & Wang, P. Rational design of artificial biofilms as sustainable supports for whole-cell catalysis through integrating extra- and intracellular catalysis. ChemSusChem 15, e202200850 (2022).
Google Scholar
-
Gunes, B. A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes. Renew. Sustain. Energy Rev. 143, 110950 (2021).
Google Scholar
-
Sun, X., Atiyeh, H. K., Huhnke, R. L. & Tanner, R. S. Syngas fermentation process development for production of biofuels and chemicals: a review. Bioresour. Technol. Rep. 7, 100279 (2019).
Google Scholar
-
Stoll, I. K. et al. The complex way to sustainability: petroleum-based processes versus biosynthetic pathways in the formation of c4 chemicals from syngas. Ind. Eng. Chem. Res. 58, 15863–15871 (2019).
Google Scholar
-
Zhang, F. et al. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res. 47, 6122–6129 (2013).
Google Scholar
-
Mohammadi, M. et al. Bioconversion of synthesis gas to second generation biofuels: a review. Renew. Sustain. Energy Rev. 15, 4255–4273 (2011).
Google Scholar
-
Riegler, P. et al. Continuous conversion of CO2/H2 with Clostridium aceticum in biofilm reactors. Bioresour. Technol. 291, 121760 (2019).
Google Scholar
-
Ning, X. et al. Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. iScience 24, 102998 (2021).
Google Scholar
-
Chavez, B. A., Raghavan, V. & Tartakovsky, B. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Adv. 12, 16105–16118 (2022).
Google Scholar
-
Ahmad, A., Priyadarshani, M., Das, S. & Ghangrekar, M. M. Role of bioelectrochemical systems for the remediation of emerging contaminants from wastewater: a review. J. Basic. Microbiol. 62, 201–222 (2021).
Google Scholar
-
Roy, M., Aryal, N., Zhang, Y., Patil, S. A. & Pant, D. Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization. Curr. Opin. Green. Sustain. Chem. 35, 100605 (2022).
Google Scholar
-
Conners, E. M., Rengasamy, K. & Bose, A. Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications. J. Ind. Microbiol. Biotechnol. 49, 12 (2022).
Google Scholar
-
Hackbarth, M. et al. Monitoring and quantification of bioelectrochemical Kyrpidia spormannii biofilm development in a novel flow cell setup. Chem. Eng. J. 390, 124604 (2020).
Google Scholar
-
Renslow, R. S. et al. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms. Energy Environ. Sci. 6, 1827–1836 (2013).
Google Scholar
-
Lichtervelde, A. C. L., de, Heijne, A., ter, Hamelers, H. V. M., Biesheuvel, P. M. & Dykstra, J. E. Theory of ion and electron transport coupled with biochemical conversions in an electroactive biofilm. Phys. Rev. Appl. 12, 014018 (2019).
Google Scholar
-
Fujikawa, T. et al. Unexpected genomic features of high current density-producing Geobacter sulfurreducens strain YM18. Fems. Microbiol. Lett. 368, fnab119 (2021).
Google Scholar
-
Jiang, X. et al. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nat. Commun. 4, 2751 (2013).
Google Scholar
-
Liu, X., Walker, D. J. F., Nonnenmann, S. S., Sun, D. & Lovley, D. R. Direct observation of electrically conductive pili emanating from Geobacter sulfurreducens. mBio 12, e02209–e02221 (2021).
Google Scholar
-
Gu, Y. et al. Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 597, 430–434 (2021).
Google Scholar
-
Philipp, L.-A., Edel, M. & Gescher, J. Chapter one genetic engineering for enhanced productivity in bioelectrochemical systems. Adv. Appl. Microbiol. 111, 1–31 (2020).
Google Scholar
-
Lovley, D. R. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Env. Microbiol. Rep. 3, 27–35 (2011).
Google Scholar
-
Edel, M., Horn, H. & Gescher, J. Biofilm systems as tools in biotechnological production. Appl. Microbiol. Biotechnol. 103, 5095–5103 (2019).
Google Scholar
-
Jourdin, L., Sousa, J., van Stralen, N. & Strik, D. P. B. T. B. Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: an interdisciplinary roadmap towards future research and application. Appl. Energ. 279, 115775 (2020).
Google Scholar
-
Prévoteau, A., Carvajal-Arroyo, J. M., Ganigué, R. & Rabaey, K. Microbial electrosynthesis from CO2: forever a promise? Curr. Opin. Biotech. 62, 48–57 (2020).
Google Scholar
-
Walter, X. A. et al. From the lab to the field: self-stratifying microbial fuel cells stacks directly powering lights. Appl. Energ. 277, 115514 (2020).
Google Scholar
-
Cao, B. et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science 373, 1336–1340 (2021).
Google Scholar
-
Wang, D. et al. Surface modification of Shewanella oneidensis MR-1 with polypyrrole-dopamine coating for improvement of power generation in microbial fuel cells. J. Power Sources 483, 229220 (2021).
Google Scholar
-
Knoll, M. T., Fuderer, E. & Gescher, J. Sprayable biofilm—agarose hydrogels as 3D matrix for enhanced productivity in bioelectrochemical systems. Biofilm 4, 100077 (2022).
Google Scholar
-
Krieg, T., Sydow, A., Schröder, U., Schrader, J. & Holtmann, D. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32, 645–655 (2014).
Google Scholar
-
Kerzenmacher, S. Engineering of microbial electrodes. Adv. Biochem. Eng. Biotechnol. 167, 135–180 (2017).
-
Asensio, Y. et al. Upgrading fluidized bed bioelectrochemical reactors for treating brewery wastewater by using a fluid-like electrode. Chem. Eng. J. 406, 127103 (2021).
Google Scholar
-
Hackbarth, M., Gescher, J., Horn, H. & Reiner, J. E. A scalable, rotating disc bioelectrochemical reactor (RDBER) suitable for the cultivation of both cathodic and anodic biofilms. Bioresour. Technol. Rep. 21, 101357 (2023).
Google Scholar
-
Nerenberg, R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr. Opin. Biotech. 38, 131–136 (2016).
Google Scholar
-
Martin, K. J. & Nerenberg, R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour. Technol. 122, 83–94 (2012).
Google Scholar
-
Elisiário, M. P., Wever, H. D., Hecke, W. V., Noorman, H. & Straathof, A. J. J. Membrane bioreactors for syngas permeation and fermentation. Crit. Rev. Biotechnol. 42, 856–872 (2022).
Google Scholar
-
Yasin, M. et al. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour. Technol. 177, 361–374 (2015).
Google Scholar
-
Asimakopoulos, K., Gavala, H. N. & Skiadas, I. V. Reactor systems for syngas fermentation processes: a review. Chem. Eng. J. 348, 732–744 (2018).
Google Scholar
-
Dong, K. et al. Nitrogen removal from nitrate-containing wastewaters in hydrogen-based membrane biofilm reactors via hydrogen autotrophic denitrification: biofilm structure, microbial community and optimization strategies. Front. Microbiol. 13, 924084 (2022).
Google Scholar
-
Nangle, S. N. et al. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metab. Eng. 62, 207–220 (2020).
Google Scholar
-
Windhorst, C. & Gescher, J. Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16. Biotechnol. Biofuels 12, 163 (2019).
Google Scholar
-
Stiefelmaier, J. et al. Characterization of terrestrial phototrophic biofilms of cyanobacterial species. Algal Res. 50, 101996 (2020).
Google Scholar
-
Bolhuis, H., Cretoiu, M. S. & Stal, L. J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 90, 335–350 (2014).
Google Scholar
-
Angermayr, S. A., Rovira, A. G. & Hellingwerf, K. J. Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352–361 (2015).
Google Scholar
-
Fisher, M. L., Allen, R., Luo, Y. & Curtiss, R. Export of extracellular polysaccharides modulates adherence of the cyanobacterium Synechocystis. PLoS One 8, e74514 (2013).
Google Scholar
-
Agostoni, M., Waters, C. M. & Montgomery, B. L. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria. Biotechnol. Bioeng. 113, 311–319 (2016).
Google Scholar
-
Rosenbaum, M., He, Z. & Angenent, L. T. Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr. Opin. Biotechnol. 21, 259–264 (2010).
Google Scholar
-
Obileke, K. C., Onyeaka, H., Meyer, E. L. & Nwokolo, N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review. Electrochem. Commun. 125, 107003 (2021).
Google Scholar
-
Tschörtner, J., Lai, B. & Krömer, J. O. Biophotovoltaics: green power generation from sunlight and water. Front. Microbiol. 10, 866 (2019).
Google Scholar
-
McCormick, A. J. et al. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 4, 4699–4709 (2011).
Google Scholar
-
Miranda, A. F. et al. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol. Biofuels 10, 1–23 (2017).
Google Scholar
-
Kollmen, J. & Strieth, D. The beneficial effects of cyanobacterial co-culture on plant growth. Life 12, 223 (2022).
Google Scholar
-
Mutale-Joan, C., Sbabou, L. & Hicham, E. A. Microalgae and cyanobacteria: how exploiting these microbial resources can address the underlying challenges related to food sources and sustainable agriculture: a review. J. Plant. Growth Regul. 42, 1–20 (2022).
Google Scholar
-
Stirk, W. A., Ördög, V., Staden, J. V. & Jäger, K. Cytokinin- and auxin-like activity in Cyanophyta and microalgae. J. Appl. Phycol. 14, 215–221 (2002).
Google Scholar
-
Han, X., Zeng, H., Bartocci, P., Fantozzi, F. & Yan, Y. Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4, 25 (2018).
Google Scholar
-
Shariatmadari, Z., Riahi, H., Hashtroudi, M. S., Ghassempour, A. R. & Aghashariatmadary, Z. Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil. Sci. Plant. Nutr. 59, 535–547 (2013).
Google Scholar
-
Kumar, G., Teli, B., Mukherjee, A., Bajpai, R. & Sarma, B. K. in Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms (eds Singh, H., Keswani, C., Reddy, M., Sansinenea, E. & García-Estrada, C.) 239–252 (Springer, 2019).
-
Irisarri, P., Gonnet, S. & Monza, J. Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J. Biotechnol. 91, 95–103 (2001).
Google Scholar
-
Prasanna, R., Joshi, M., Rana, A., Shivay, Y. S. & Nain, L. Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J. Microbiol. Biotechnol. 28, 1223–1235 (2012).
Google Scholar
-
Roeselers, G., Loosdrecht, M. C. M. V. & Muyzer, G. Phototrophic biofilms and their potential applications. J. Appl. Phycol. 20, 227–235 (2008).
Google Scholar
-
Fischer, S. E., Fischer, S. I., Magris, S. & Mori, G. B. Isolation and characterization of bacteria from the rhizosphere of wheat. World J. Microbiol. Biotechnol. 23, 895–903 (2007).
Google Scholar
-
Karthikeyan, N., Prasanna, R., Nain, L. & Kaushik, B. D. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur. J. Soil. Biol. 43, 23–30 (2007).
Google Scholar
-
Grzesik, M., Romanowska-Duda, Z. & Kalaji, H. M. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55, 510–521 (2017).
Google Scholar
-
Saadatnia, H. & Riahi, H. Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant. Soil. Env. 55, 207–212 (2009).
Google Scholar
-
Coppens, J. et al. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J. Appl. Phycol. 28, 2367–2377 (2016).
Google Scholar
-
Maqubela, M. P., Mnkeni, P. N. S., Issa, O. M., Pardo, M. T. & D’Acqui, L. P. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant. Soil. 315, 79–92 (2009).
Google Scholar
-
Prasanna, R. et al. Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. Eur. J. Soil. Biol. 75, 15–23 (2016).
Google Scholar
-
Fedeson, D. T. & Ducat, D. C. Cyanobacterial surface display system mediates engineered interspecies and abiotic binding. ACS Synth. Biol. 6, 367–374 (2017).
Google Scholar
-
Cengic, I., Uhlén, M. & Hudson, E. P. Surface display of small affinity proteins on Synechocystis sp. strain PCC 6803 mediated by fusion to the major type IV pilin PilA1. J. Bacteriol. 200, e00270–e00318 (2018).
Google Scholar
-
Quoc, B. N. et al. An investigation into the optimal granular sludge size for simultaneous nitrogen and phosphate removal. Water Res. 198, 117119 (2021).
Google Scholar
-
Bathe, S., Kreuk, M. de, McSwain, B. & Schwarzenbeck, N. (eds) Aerobic Granular Sludge (IWA Publishing, 2015).
-
Ghosh, S. & Chakraborty, S. Production of polyhydroxyalkanoates (PHA) from aerobic granules of refinery sludge and Micrococcus aloeverae strain SG002 cultivated in oily wastewater. Int. Biodeterior. Biodegrad. 155, 105091 (2020).
Google Scholar
-
Bahgat, N. T., Wilfert, P., Korving, L. & Loosdrecht, Mvan Integrated resource recovery from aerobic granular sludge plants. Water Res. 234, 119819 (2023).
Google Scholar
-
Nancharaiah, Y. V. & Reddy, G. K. K. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications. Bioresour. Technol. 247, 1128–1143 (2018).
Google Scholar
-
Jiang, Q. et al. Current progress, challenges and perspectives in the microalgal-bacterial aerobic granular sludge process: a review. Int. J. Environ. Res. Publ. Health 19, 13950 (2022).
Google Scholar
-
Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).
Google Scholar
-
Cheng, K.-C., Catchmark, J. M. & Demirci, A. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3, 12 (2009).
Google Scholar
-
Lee, Y. S. & Park, W. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol. 102, 3059–3070 (2018).
Google Scholar
-
Dhami, N. K., Reddy, S. M. & Mukherjee, A. in Advanced Topics in Biomineralization (ed. Seto, J.) 137–164 (InTechOpen, 2012).
-
Saracho, A. C. et al. Controlling the calcium carbonate microstructure of engineered living building materials. J. Mater. Chem. A. 9, 24438–24451 (2021).
Google Scholar
-
Little, B. J., Hinks, J. & Blackwood, D. J. Microbially influenced corrosion: towards an interdisciplinary perspective on mechanisms. Int. Biodeter. Biodegr. 154, 105062 (2020).
Google Scholar
-
Zuo, R., Kus, E., Mansfeld, F. & Wood, T. K. The importance of live biofilms in corrosion protection. Corros. Sci. 47, 279–287 (2005).
Google Scholar
-
Liu, T. et al. Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization. ACS Appl. Mater. Inter. 10, 40317–40327 (2018).
Google Scholar
-
Li, Z. et al. Marine biofilms with significant corrosion inhibition performance by secreting extracellular polymeric substances. ACS Appl. Mater. Inter. 13, 47272–47282 (2021).
Google Scholar
-
Karande, R. et al. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms. Biotechnol. Bioeng. 113, 52–61 (2016).
Google Scholar
-
Gross, R., Hauer, B., Otto, K. & Schmid, A. Microbial biofilms: new catalysts for maximizing productivity of long‐term biotransformations. Biotechnol. Bioeng. 98, 1123–1134 (2007).
Google Scholar
-
Yang, G., Mai, Q., Zhuang, Z. & Zhuang, L. Buffer capacity regulates the stratification of anode-respiring biofilm during brewery wastewater treatment. Environ. Res. 201, 111572 (2021).
Google Scholar
-
Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).
Google Scholar
-
Penesyan, A., Paulsen, I. T., Kjelleberg, S. & Gillings, M. R. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. npj Biofilms Microbiomes 7, 80 (2021).
Google Scholar
-
Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).
Google Scholar
-
Cai, Y. M. Non-surface attached bacterial aggregates: a ubiquitous third lifestyle. Front. Microbiol. 11, 3106 (2020).
Google Scholar
-
Valentini, M. & Filloux, A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291, 12547–12555 (2016).
Google Scholar
-
Baker, A. E. et al. Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa. J. Bacteriol. 201, e00741–e00818 (2019).
Google Scholar
-
Webster, S. S., Lee, C. K., Schmidt, W. C., Wong, G. C. L. & O’Toole, G. A. Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation. Proc. Natl Acad. Sci. USA 118, e2105566118 (2021).
Google Scholar
-
Baker, A. E. et al. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa. J. Bacteriol. 198, 1837–1846 (2016).
Google Scholar
-
Thormann, K. M. Dynamic hybrid flagellar motors—fuel switch and more. Front. Microbiol. 13, 867 (2022).
Google Scholar
-
Gerven, N. V., Klein, R. D., Hultgren, S. J. & Remaut, H. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol. 23, 693–706 (2015).
Google Scholar
-
Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).
Google Scholar
-
Paula, A. J., Hwang, G. & Koo, H. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nat. Commun. 11, 1354 (2020).
Google Scholar
-
Blauert, F., Horn, H. & Wagner, M. Time‐resolved biofilm deformation measurements using optical coherence tomography. Biotechnol. Bioeng. 112, 1893–1905 (2015).
Google Scholar
-
Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586 (2020).
Google Scholar
-
Moore-Ott, J. A., Chiu, S., Amchin, D. B., Bhattacharjee, T. & Datta, S. S. A biophysical threshold for biofilm formation. eLife 11, e76380 (2022).
Google Scholar
Acknowledgements
The authors thank J. Kollmen, D. Strieth, J. Stiefelmaier and A. Schmeckebier (funded by the DFG (German Research Foundation), Collaborative Research Center 926, project C03 – Project-ID 172116086) as well as R. Karande and M. Bozan for providing research data and illustrations on the topic of phototropic biofilms and reactor configurations, respectively.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Kai Bester and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
About this article
Cite this article
Philipp, LA., Bühler, K., Ulber, R. et al. Beneficial applications of biofilms.
Nat Rev Microbiol (2023). https://doi.org/10.1038/s41579-023-00985-0
-
Accepted: 05 October 2023
-
Published: 13 November 2023
-
DOI: https://doi.org/10.1038/s41579-023-00985-0