Abstract
Crystal structure prediction (CSP) is an evolving field aimed at discerning crystal structures with minimal prior information. Despite the success of various CSP algorithms, their practical applicability remains circumscribed, particularly for large and complex systems. Here, to address this challenge, we show an evolutionary structure generator within the MAGUS (Machine Learning and Graph Theory Assisted Universal Structure Searcher) framework, inspired by the symmetry principle. This generator extracts both global and local features of explored crystal structures using group and graph theory. By integrating an on-the-fly space group miner and fragment reorganizer, augmented by symmetry-kept mutation, our approach generates higher-quality initial structures, reducing the computational costs of CSP tasks. Benchmarking tests show up to fourfold performance improvements. The method also proves valid in complex phosphorus allotrope systems. Furthermore, we apply our approach to the diamond–silicon (111)-(7 × 7) surface system, identifying up to 42 metastable structures within an 18 meV Å−2 energy range, demonstrating the efficacy of our approach in navigating challenging search spaces.
This is a preview of subscription content, access via your institution
Access options
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */






Similar content being viewed by others

COPEX: co-evolutionary crystal structure prediction algorithm for complex systems

Coevolutionary search for optimal materials in the space of all possible compounds

Predicting stable crystalline compounds using chemical similarity
Data availability
Source data for Figs. 2–4 and 6, Extended Data Figs. 1 and 3 are available with this paper. All data were generated using the MAGUS code (version 2.0) and are available from gitlab (https://gitlab.com/bigd4/magus) and on Zenodo at https://doi.org/10.5281/zenodo.14730874 (ref. 91).
Code availability
The MAGUS source code can be accessed from gitlab (https://gitlab.com/bigd4/magus) after registration (https://www.wjx.top/vm/m5eWS0X.aspx), or on Zenodo at https://doi.org/10.5281/zenodo.14730874 (ref. 91).
References
-
Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).
Google Scholar
-
Glass, C. W., Oganov, A. R. & Hansen, N. USPEX—evolutionary crystal structure prediction. Comput. Phys. Commun. 175, 713–720 (2006).
Google Scholar
-
Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).
Google Scholar
-
Lonie, D. C. & Zurek, E. XtalOpt: an open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182, 372–387 (2011).
Google Scholar
-
Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).
Google Scholar
-
Wang, J. et al. MAGUS: machine learning and graph theory assisted universal structure searcher. Natl Sci. Rev. 10, nwad128 (2023).
Google Scholar
-
Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
Google Scholar
-
Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).
Google Scholar
-
Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2, 025002 (2021).
Google Scholar
-
Fan, Z. et al. Neuroevolution machine learning potentials: combining high accuracy and low cost in atomistic simulations and application to heat transport. Phys. Rev. B 104, 104309 (2021).
Google Scholar
-
Wang, J. et al. E(n)-equivariant Cartesian tensor message passing interatomic potential. Nat. Commun. 15, 7607 (2024).
Google Scholar
-
Tong, Q., Xue, L., Lv, J., Wang, Y. & Ma, Y. Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface. Faraday Discuss. 211, 31–43 (2018).
Google Scholar
-
Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).
Google Scholar
-
Bisbo, M. K. & Hammer, B. Efficient global structure optimization with a machine-learned surrogate model. Phys. Rev. Lett. 124, 086102 (2020).
Google Scholar
-
Li, C.-N., Liang, H.-P., Zhang, X., Lin, Z. & Wei, S.-H. Graph deep learning accelerated efficient crystal structure search and feature extraction. npj Comput. Mater. 9, 176 (2023).
Google Scholar
-
Deringer, V. L., Proserpio, D. M., Csányi, G. & Pickard, C. J. Data-driven learning and prediction of inorganic crystal structures. Faraday Discuss. 211, 45–59 (2018).
Google Scholar
-
Yamashita, T. et al. Crystal structure prediction accelerated by Bayesian optimization. Phys. Rev. Mater. 2, 013803 (2018).
Google Scholar
-
Kusaba, A., Kangawa, Y., Kuboyama, T. & Oshiyama, A. Exploration of a large-scale reconstructed structure on GaN(0001) surface by Bayesian optimization. Appl. Phys. Lett. 120, 021602 (2022).
Google Scholar
-
Wales, D. J. & Doye, J. P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).
Google Scholar
-
Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).
Google Scholar
-
Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172–1182 (2013).
Google Scholar
-
Avery, P. & Zurek, E. RandSpg: an open-source program for generating atomistic crystal structures with specific spacegroups. Comput. Phys. Commun. 213, 208–216 (2017).
Google Scholar
-
Wang, S.-W., Hsing, C.-R. & Wei, C.-M. Expedite random structure searching using objects from Wyckoff positions. J. Chem. Phys. 148, 054101 (2018).
Google Scholar
-
Shi, X., He, C., Pickard, C. J., Tang, C. & Zhong, J. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. Phys. Rev. B 97, 014104 (2018).
Google Scholar
-
Shao, X. et al. A symmetry-orientated divide-and-conquer method for crystal structure prediction. J. Chem. Phys. 156, 014105 (2022).
Google Scholar
-
Brix, F., Verner Christiansen, M.-P. & Hammer, B. Cascading symmetry constraint during machine learning-enabled structural search for sulfur-induced Cu(111)-(43 × 43) surface reconstruction. J. Chem. Phys. 160, 174107 (2024).
Google Scholar
-
Urusov, V. S. & Nadezhina, T. N. Frequency distribution and selection of space groups in inorganic crystal chemistry. J. Struct. Chem. 50, 22–37 (2009).
Google Scholar
-
Bärnighausen, H. Group–subgroup relations between space groups: a useful tool in crystal chemistry. MATCH Commun. Math. Chem. 9, 139–175 (1980).
Google Scholar
-
Müller, U. Symmetry Relationships Between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry (OUP, 2013).
-
Xia, K. et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull. 63, 817–824 (2018).
Google Scholar
-
Gao, H., Wang, J., Han, Y. & Sun, J. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory. Fundam. Res. 1, 466–471 (2021).
Google Scholar
-
Han, Y. et al. Prediction of surface reconstructions using MAGUS. J. Chem. Phys. 158, 174109 (2023).
Google Scholar
-
Liu, C. et al. Multiple superionic states in helium–water compounds,. Nat. Phys. 15, 1065–1070 (2019).
Google Scholar
-
Xia, K. et al. Predictions on high-power trivalent metal pentazolate salts. J. Phys. Chem. Lett. 10, 6166–6173 (2019).
Google Scholar
-
Gu, Q., Xing, D. & Sun, J. Superconducting single-layer T-graphene and novel synthesis routes. Chin. Phys. Lett. 36, 097401 (2019).
Google Scholar
-
Liu, C. et al. Mixed coordination silica at megabar pressure. Phys. Rev. Lett. 126, 035701 (2021).
Google Scholar
-
Ding, C. et al. High energy density polymeric nitrogen nanotubes inside carbon nanotubes. Chin. Phys. Lett. 39, 036101 (2022).
Google Scholar
-
Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).
Google Scholar
-
Ji, M., Wang, C.-Z. & Ho, K.-M. Comparing efficiencies of genetic and minima hopping algorithms for crystal structure prediction. Phys. Chem. Chem. Phys. 12, 11617–11623 (2010).
Google Scholar
-
Deringer, V. L., Pickard, C. J. & Csanyi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).
Google Scholar
-
Bushlanov, P. V., Blatov, V. A. & Oganov, A. R. Topology-based crystal structure generator. Comput. Phys. Commun. 236, 1–7 (2019).
Google Scholar
-
Fung, C. M., Er, C. C., Tan, L. L., Mohamed, A. R. & Chai, S. P. Red phosphorus: an up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem. Rev. 122, 3879–3965 (2022).
Google Scholar
-
Ruck, M. et al. Fibrous red phosphorus. Angew. Chem. Int. Ed. 44, 7616–7619 (2005).
Google Scholar
-
Hittorf, W. Zur kenntniss des phosphors. Ann. Phys. 202, 193–228 (1865).
Google Scholar
-
Thurn, H. & Krebs, H. Über struktur und eigenschaften der halbmetalle. XXII. Die kristallstruktur des hittorfschen phosphors. Acta Crystallogr. B 25, 125–135 (1969).
Google Scholar
-
Deringer, V. L., Pickard, C. J. & Proserpio, D. M. Hierarchically structured allotropes of phosphorus from data-driven exploration. Angew. Chem. Int. Ed. 59, 15880–15885 (2020).
Google Scholar
-
Lu, Y. L. et al. Fibrous red phosphorene: a promising two-dimensional optoelectronic and photocatalytic material with a desirable band gap and high carrier mobility. Phys. Chem. Chem. Phys. 22, 13713–13720 (2020).
Google Scholar
-
Yoon, J. Y. et al. Type-II red phosphorus: wavy packing of twisted pentagonal tubes. Angew. Chem. Int. Ed. 62, e202307102 (2023).
Google Scholar
-
Scelta, D. et al. Interlayer bond formation in black phosphorus at high pressure. Angew. Chem. Int. Ed. 56, 14135–14140 (2017).
Google Scholar
-
Han, W. H., Kim, S., Lee, I. H. & Chang, K. J. Prediction of green phosphorus with tunable direct band gap and high mobility. J. Phys. Chem. Lett. 8, 4627–4632 (2017).
Google Scholar
-
Schusteritsch, G., Uhrin, M. & Pickard, C. J. Single-layered Hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett. 16, 2975–2980 (2016).
Google Scholar
-
Zhang, L. et al. Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed. 59, 1074–1080 (2020).
Google Scholar
-
Takayanagi, K., Tanishiro, Y., Takahashi, S. & Takahashi, M. Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction. Surf. Sci. 164, 367–392 (1985).
Google Scholar
-
Bauer, M. N., Probert, M. I. J. & Panosetti, C. Systematic comparison of genetic algorithm and basin hopping approaches to the global optimization of Si(111) surface reconstructions. J. Phys. Chem. A 126, 3043–3056 (2022).
Google Scholar
-
Du, X. et al. Machine-learning-accelerated simulations to enable automatic surface reconstruction. Nat. Comput. Sci. 3, 1034–1044 (2023).
Google Scholar
-
Han, J., Zhang, L., Car, R. & Weinan, E. Deep potential: a general representation of a many-body potential energy surface. Commun. Comput. Phys. 23, 629–639 (2018).
Google Scholar
-
Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).
Google Scholar
-
Fan, Z. et al. GPUMD: a package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. J. Chem. Phys. 157, 114801 (2022).
Google Scholar
-
Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 35, 11423–11436 (2022).
Google Scholar
-
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).
Google Scholar
-
Ran, Y. et al. Towards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation. npj Comput. Mater. 7, 184 (2021).
Google Scholar
-
Gao, P., Wang, S., Lv, J., Wang, Y. & Ma, Y. A database assisted protein structure prediction method via a swarm intelligence algorithm. RSC Adv. 7, 39869–39876 (2017).
Google Scholar
-
Ahnert, S. E., Grant, W. P. & Pickard, C. J. Revealing and exploiting hierarchical material structure through complex atomic networks. npj Comput. Mater. 3, 35 (2017).
Google Scholar
-
Yoshikawa, N. & Hutchison, G. R. Fast, efficient fragment-based coordinate generation for Open Babel. J. Cheminform. 11, 49 (2019).
Google Scholar
-
Deaven, D. M. & Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995).
Google Scholar
-
Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).
Google Scholar
-
Gao, H., Wang, J., Guo, Z. & Sun, J. Determining dimensionalities and multiplicities of crystal nets. npj Comput. Mater. 6, 143 (2020).
Google Scholar
-
Arenas, A., Fernández, A. & Gómez, S. Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10, 053039 (2008).
Google Scholar
-
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
Google Scholar
-
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).
Google Scholar
-
Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005).
Google Scholar
-
Fortunato, S. & Newman, M. E. J. 20 years of network community detection. Nat. Phys. 18, 848–850 (2022).
Google Scholar
-
Brunner, G. An unconventional view of the closest sphere packings. Acta Crystallogr. A 27, 388–390 (1971).
Google Scholar
-
Lewis, G. V. & Catlow, C. R. A. Potential models for ionic oxides. J. Phys. C 18, 1149 (1985).
Google Scholar
-
Fang, C. M. & de With, G. Crystal structure and chemical bonding of the high-pressure phase of MgAl2O4 from first-principles calculations. Philos. Mag. A 82, 2885–2894 (2002).
Google Scholar
-
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Google Scholar
-
Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity: crossover from cubic to tetragonal lattice. Phys. Rev. B 66, 224504 (2002).
Google Scholar
-
Paul, R., Hu, S. X. & Karasiev, V. V. Anharmonic and anomalous trends in the high-pressure phase diagram of silicon. Phys. Rev. Lett. 122, 125701 (2019).
Google Scholar
-
Fredericks, S., Parrish, K., Sayre, D. & Zhu, Q. PyXtal: a Python library for crystal structure generation and symmetry analysis. Comput. Phys. Commun. 261, 107810 (2021).
Google Scholar
-
Wales, D. J. Symmetry, near-symmetry and energetics. Chem. Phys. Lett. 285, 330–336 (1998).
Google Scholar
-
Togo, A., Shinohara, K. & Tanaka, I. Spglib: a software library for crystal symmetry search. Sci. Technol. Adv. Mater. Methods 4, 2384822 (2024).
Google Scholar
-
Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).
Google Scholar
-
Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).
Google Scholar
-
Brandes, U. On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008).
Google Scholar
-
Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977).
Google Scholar
-
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
Google Scholar
-
Hagberg, A., Swart, P. & Chult, D. S. Exploring Network Structure, Dynamics, and Function using NetworkX (Los Alamos National Laboratory, 2008).
-
Xie, J., Kelley, S. & Szymanski, B. K. Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45, 1–35 (2013).
Google Scholar
-
Zhu, Q., Sharma, V., Oganov, A. R. & Ramprasad, R. Predicting polymeric crystal structures by evolutionary algorithms. J. Chem. Phys. 141, 154102 (2014).
Google Scholar
-
Tom, R. et al. Genarris 2.0: a random structure generator for molecular crystals. Comput. Phys. Commun. 250, 107170 (2020).
Google Scholar
-
Han, Y. et al. Source code and demo of MAGUS (Machine Learning and Graph Theory Assisted Universal Structure Searcher) v2.0.0. Zenodo https://doi.org/10.5281/zenodo.14730874 (2025).
-
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Google Scholar
Acknowledgements
We thank Z. Fan and Y. Wang for fruitful discussion regarding NEP usage. We gratefully acknowledge the financial support from the National Key R&D Program of China (grant number 2022YFA1403201), the National Natural Science Foundation of China (grants T2495231, 12125404 and 123B2049), the Basic Research Program of Jiangsu (grants BK20233001 and BK20241253), the Jiangsu Funding Program for Excellent Postdoctoral Talent (grants 2024ZB002 and 2024ZB075), the Postdoctoral Fellowship Program of CPSF (grant GZC20240695), the AI & AI for Science program of Nanjing University, and the Fundamental Research Funds for the Central Universities. The calculations were carried out using supercomputers at the High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures and the high-performance supercomputing center of Nanjing University.
Author information
Authors and Affiliations
Contributions
Y.H. and C.D. implemented the code, collected and analyzed the data, and led the paper preparation. J. Shi, S.Y., Q.J. and S.P. provided feedback throughout the process, and assisted with the paper writing. J. Sun, H.G. and J.W. conceived the project, supervised the research and contributed to securing funding. All authors participated in the discussion of the results and the writing of the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Computational Science thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 The symmetry principle in crystal structure prediction for the MgAl2O4 system.
(a) Space group distribution (P1 structures are excluded) and corresponding enthalpy of 3580 local relaxed structures of MgAl2O4, whose initial states are 20 random generated structures for each specific space group. The relaxed structures show a preference for certain space group symmetry. (b) Group-subgroup relationships between the preferred space groups. Each pair of group-subgroup relations with index<4 is connected by an arrow and the space group of GM is colored in red. (c) Spacegoup distribution of resultant structures obtained from applying symmetry-kept rattle mutation to a single metastable Pnma phase followed by local relaxation (duplicates of parent structure are excluded). The subfigure shows the view of the parent and two offsprings. It could conclude that most offsprings lowered their symmetry than parent after local relaxation. (d) A possible explanation can be derived from the double well model PES. When a high symmetry phase locates surrounding by multi lower energy lower symmetry local minima, its symmetry is prone to breaking. The red atoms represent O, the orange atoms represent Mg, and the cyan atoms represent Al.
Source data
Extended Data Fig. 2 Illustration of graph-theory-based structure decomposition method.
(a) Structure of α-B, the boron fragments obtained and their ranking indicators (uniqueness, description length). The two inequivalent atoms in α-B are marked by solid circles of different colors. (b) The ‘neighborhood’ structure within a certain distance and step cutoff of the selected atom marked by magenta. (c) Impact of cutoff parameters for building α-B ‘neighborhood’ structures. As the distance and step cutoff decrease, the time cost decreases as less fragments are identified. The B12 icosahedra can only be found with distance cutoff no less than 4 Å and step cutoff no less than 3, marked by yellow line. (d) Structure of the fibrous red phosphorous and the decomposed fragments. (e) Structure of graphene and the decomposed fragments. (f) The B12 icosahedra community (iv), has the most uniformly distributed betweenness centrality, and appending any neighbor atom to it (i-iii) will disrupt this uniformity. Therefore, the ‘uniqueness’ of betweenness centrality is employed as one of the indicators for fragment ranking. Atoms that have same betweenness centrality are same colored, with the specific values of betweenness centrality indicated in the legend at the bottom of the figure.
Extended Data Fig. 3 Structure of the red phosphorus allotropes and the success rate for identifying them.
(a) Fibrous P structure. Several structures exhibiting characteristics similar to other stable experimental structures are selected and labeled as (ii-vi). The success rate is calculated for identifying structures with machine learning potential energy lower than or equal to that of these reference structures. (b) Violet P structure and the corresponding success rates. The reference structures are shown in Supplementary Fig. 1(d).
Source data
Extended Data Fig. 4 Different representative metastable Si (111)-(7×7) surface reconstruction models found by MAGUS having 96-108 atoms in the surface region.
The surface energy, space group symmetry, and number of atoms in the reconstruction region are indicated. A deeper color and larger atoms represent the upper surface, while lighter color and smaller atoms represent the substrate. The surface energy of reference DAS model is set to 0. More metastable structures are shown in Supplementary Fig. 2.
Supplementary information
Supplementary Information
Supplementary Sections 1–5, Figs. 1–6 and Tables 1–4.
Peer Review File
Source data
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Fig. 6
Statistical source data.
Source Data Extended Data Fig. 1
Statistical source data.
Source Data Extended Data Fig. 3
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Han, Y., Ding, C., Wang, J. et al. Efficient crystal structure prediction based on the symmetry principle.
Nat Comput Sci (2025). https://doi.org/10.1038/s43588-025-00775-z
-
Received: 16 March 2024
-
Accepted: 28 January 2025
-
Published: 27 February 2025
-
DOI: https://doi.org/10.1038/s43588-025-00775-z