Efficient crystal structure prediction based on the symmetry principle


Abstract

Crystal structure prediction (CSP) is an evolving field aimed at discerning crystal structures with minimal prior information. Despite the success of various CSP algorithms, their practical applicability remains circumscribed, particularly for large and complex systems. Here, to address this challenge, we show an evolutionary structure generator within the MAGUS (Machine Learning and Graph Theory Assisted Universal Structure Searcher) framework, inspired by the symmetry principle. This generator extracts both global and local features of explored crystal structures using group and graph theory. By integrating an on-the-fly space group miner and fragment reorganizer, augmented by symmetry-kept mutation, our approach generates higher-quality initial structures, reducing the computational costs of CSP tasks. Benchmarking tests show up to fourfold performance improvements. The method also proves valid in complex phosphorus allotrope systems. Furthermore, we apply our approach to the diamond–silicon (111)-(7 × 7) surface system, identifying up to 42 metastable structures within an 18 meV Å−2 energy range, demonstrating the efficacy of our approach in navigating challenging search spaces.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */

/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */

Fig. 1: Illustration of the concept of the symmetry-principle-guided evolutionary structure generator.
Fig. 2: Illustration of how MAGUS found the global minima for MgAl2O4, highlighting the usage of a space group miner and symmetry-kept rattle mutation.
Fig. 3: Illustration of one trajectory of MAGUS’s global search into the γ-B system with an on-the-fly fragments reorganizer and a space group miner.
Fig. 4: Benchmark comparison for different testing systems.
Fig. 5: A trajectory of MAGUS’s global search to identify violet P.
Fig. 6: Illustration of the target structural model, corresponding initial structure and benchmark results of the Si (111)-(7 × 7) surface system.

Similar content being viewed by others

COPEX: co-evolutionary crystal structure prediction algorithm for complex systems

Coevolutionary search for optimal materials in the space of all possible compounds

Predicting stable crystalline compounds using chemical similarity

Data availability

Source data for Figs. 2–4 and 6, Extended Data Figs. 1 and 3 are available with this paper. All data were generated using the MAGUS code (version 2.0) and are available from gitlab (https://gitlab.com/bigd4/magus) and on Zenodo at https://doi.org/10.5281/zenodo.14730874 (ref. 91).

Code availability

The MAGUS source code can be accessed from gitlab (https://gitlab.com/bigd4/magus) after registration (https://www.wjx.top/vm/m5eWS0X.aspx), or on Zenodo at https://doi.org/10.5281/zenodo.14730874 (ref. 91).

References

  1. Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).

    Article 

    Google Scholar 

  2. Glass, C. W., Oganov, A. R. & Hansen, N. USPEX—evolutionary crystal structure prediction. Comput. Phys. Commun. 175, 713–720 (2006).

    Article 
    MATH 

    Google Scholar 

  3. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    Article 
    MATH 

    Google Scholar 

  4. Lonie, D. C. & Zurek, E. XtalOpt: an open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182, 372–387 (2011).

    Article 
    MATH 

    Google Scholar 

  5. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).

    Article 
    MATH 

    Google Scholar 

  6. Wang, J. et al. MAGUS: machine learning and graph theory assisted universal structure searcher. Natl Sci. Rev. 10, nwad128 (2023).

    Article 

    Google Scholar 

  7. Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article 
    MATH 

    Google Scholar 

  8. Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article 
    MATH 

    Google Scholar 

  9. Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2, 025002 (2021).

    Article 

    Google Scholar 

  10. Fan, Z. et al. Neuroevolution machine learning potentials: combining high accuracy and low cost in atomistic simulations and application to heat transport. Phys. Rev. B 104, 104309 (2021).

    Article 
    MATH 

    Google Scholar 

  11. Wang, J. et al. E(n)-equivariant Cartesian tensor message passing interatomic potential. Nat. Commun. 15, 7607 (2024).

    Article 

    Google Scholar 

  12. Tong, Q., Xue, L., Lv, J., Wang, Y. & Ma, Y. Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface. Faraday Discuss. 211, 31–43 (2018).

    Article 
    MATH 

    Google Scholar 

  13. Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).

    Article 

    Google Scholar 

  14. Bisbo, M. K. & Hammer, B. Efficient global structure optimization with a machine-learned surrogate model. Phys. Rev. Lett. 124, 086102 (2020).

    Article 
    MATH 

    Google Scholar 

  15. Li, C.-N., Liang, H.-P., Zhang, X., Lin, Z. & Wei, S.-H. Graph deep learning accelerated efficient crystal structure search and feature extraction. npj Comput. Mater. 9, 176 (2023).

    Article 
    MATH 

    Google Scholar 

  16. Deringer, V. L., Proserpio, D. M., Csányi, G. & Pickard, C. J. Data-driven learning and prediction of inorganic crystal structures. Faraday Discuss. 211, 45–59 (2018).

    Article 

    Google Scholar 

  17. Yamashita, T. et al. Crystal structure prediction accelerated by Bayesian optimization. Phys. Rev. Mater. 2, 013803 (2018).

    Article 
    MATH 

    Google Scholar 

  18. Kusaba, A., Kangawa, Y., Kuboyama, T. & Oshiyama, A. Exploration of a large-scale reconstructed structure on GaN(0001) surface by Bayesian optimization. Appl. Phys. Lett. 120, 021602 (2022).

    Article 

    Google Scholar 

  19. Wales, D. J. & Doye, J. P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    Article 
    MATH 

    Google Scholar 

  20. Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).

    Article 
    MATH 

    Google Scholar 

  21. Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172–1182 (2013).

    Article 
    MATH 

    Google Scholar 

  22. Avery, P. & Zurek, E. RandSpg: an open-source program for generating atomistic crystal structures with specific spacegroups. Comput. Phys. Commun. 213, 208–216 (2017).

    Article 
    MATH 

    Google Scholar 

  23. Wang, S.-W., Hsing, C.-R. & Wei, C.-M. Expedite random structure searching using objects from Wyckoff positions. J. Chem. Phys. 148, 054101 (2018).

    Article 

    Google Scholar 

  24. Shi, X., He, C., Pickard, C. J., Tang, C. & Zhong, J. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. Phys. Rev. B 97, 014104 (2018).

    Article 

    Google Scholar 

  25. Shao, X. et al. A symmetry-orientated divide-and-conquer method for crystal structure prediction. J. Chem. Phys. 156, 014105 (2022).

    Article 
    MATH 

    Google Scholar 

  26. Brix, F., Verner Christiansen, M.-P. & Hammer, B. Cascading symmetry constraint during machine learning-enabled structural search for sulfur-induced Cu(111)-(43 × 43) surface reconstruction. J. Chem. Phys. 160, 174107 (2024).

    Article 

    Google Scholar 

  27. Urusov, V. S. & Nadezhina, T. N. Frequency distribution and selection of space groups in inorganic crystal chemistry. J. Struct. Chem. 50, 22–37 (2009).

    Article 
    MATH 

    Google Scholar 

  28. Bärnighausen, H. Group–subgroup relations between space groups: a useful tool in crystal chemistry. MATCH Commun. Math. Chem. 9, 139–175 (1980).

    MathSciNet 
    MATH 

    Google Scholar 

  29. Müller, U. Symmetry Relationships Between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry (OUP, 2013).

  30. Xia, K. et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull. 63, 817–824 (2018).

    Article 
    MATH 

    Google Scholar 

  31. Gao, H., Wang, J., Han, Y. & Sun, J. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory. Fundam. Res. 1, 466–471 (2021).

    Article 
    MATH 

    Google Scholar 

  32. Han, Y. et al. Prediction of surface reconstructions using MAGUS. J. Chem. Phys. 158, 174109 (2023).

    Article 

    Google Scholar 

  33. Liu, C. et al. Multiple superionic states in helium–water compounds,. Nat. Phys. 15, 1065–1070 (2019).

    Article 
    MATH 

    Google Scholar 

  34. Xia, K. et al. Predictions on high-power trivalent metal pentazolate salts. J. Phys. Chem. Lett. 10, 6166–6173 (2019).

    Article 
    MATH 

    Google Scholar 

  35. Gu, Q., Xing, D. & Sun, J. Superconducting single-layer T-graphene and novel synthesis routes. Chin. Phys. Lett. 36, 097401 (2019).

    Article 
    MATH 

    Google Scholar 

  36. Liu, C. et al. Mixed coordination silica at megabar pressure. Phys. Rev. Lett. 126, 035701 (2021).

    Article 

    Google Scholar 

  37. Ding, C. et al. High energy density polymeric nitrogen nanotubes inside carbon nanotubes. Chin. Phys. Lett. 39, 036101 (2022).

    Article 

    Google Scholar 

  38. Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

    Article 
    MATH 

    Google Scholar 

  39. Ji, M., Wang, C.-Z. & Ho, K.-M. Comparing efficiencies of genetic and minima hopping algorithms for crystal structure prediction. Phys. Chem. Chem. Phys. 12, 11617–11623 (2010).

    Article 
    MATH 

    Google Scholar 

  40. Deringer, V. L., Pickard, C. J. & Csanyi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).

    Article 

    Google Scholar 

  41. Bushlanov, P. V., Blatov, V. A. & Oganov, A. R. Topology-based crystal structure generator. Comput. Phys. Commun. 236, 1–7 (2019).

    Article 

    Google Scholar 

  42. Fung, C. M., Er, C. C., Tan, L. L., Mohamed, A. R. & Chai, S. P. Red phosphorus: an up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem. Rev. 122, 3879–3965 (2022).

    Article 
    MATH 

    Google Scholar 

  43. Ruck, M. et al. Fibrous red phosphorus. Angew. Chem. Int. Ed. 44, 7616–7619 (2005).

    Article 

    Google Scholar 

  44. Hittorf, W. Zur kenntniss des phosphors. Ann. Phys. 202, 193–228 (1865).

    Article 
    MATH 

    Google Scholar 

  45. Thurn, H. & Krebs, H. Über struktur und eigenschaften der halbmetalle. XXII. Die kristallstruktur des hittorfschen phosphors. Acta Crystallogr. B 25, 125–135 (1969).

    Article 
    MATH 

    Google Scholar 

  46. Deringer, V. L., Pickard, C. J. & Proserpio, D. M. Hierarchically structured allotropes of phosphorus from data-driven exploration. Angew. Chem. Int. Ed. 59, 15880–15885 (2020).

    Article 

    Google Scholar 

  47. Lu, Y. L. et al. Fibrous red phosphorene: a promising two-dimensional optoelectronic and photocatalytic material with a desirable band gap and high carrier mobility. Phys. Chem. Chem. Phys. 22, 13713–13720 (2020).

    Article 

    Google Scholar 

  48. Yoon, J. Y. et al. Type-II red phosphorus: wavy packing of twisted pentagonal tubes. Angew. Chem. Int. Ed. 62, e202307102 (2023).

    Article 
    MATH 

    Google Scholar 

  49. Scelta, D. et al. Interlayer bond formation in black phosphorus at high pressure. Angew. Chem. Int. Ed. 56, 14135–14140 (2017).

    Article 

    Google Scholar 

  50. Han, W. H., Kim, S., Lee, I. H. & Chang, K. J. Prediction of green phosphorus with tunable direct band gap and high mobility. J. Phys. Chem. Lett. 8, 4627–4632 (2017).

    Article 
    MATH 

    Google Scholar 

  51. Schusteritsch, G., Uhrin, M. & Pickard, C. J. Single-layered Hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett. 16, 2975–2980 (2016).

    Article 

    Google Scholar 

  52. Zhang, L. et al. Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed. 59, 1074–1080 (2020).

    Article 
    MATH 

    Google Scholar 

  53. Takayanagi, K., Tanishiro, Y., Takahashi, S. & Takahashi, M. Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction. Surf. Sci. 164, 367–392 (1985).

    Article 
    MATH 

    Google Scholar 

  54. Bauer, M. N., Probert, M. I. J. & Panosetti, C. Systematic comparison of genetic algorithm and basin hopping approaches to the global optimization of Si(111) surface reconstructions. J. Phys. Chem. A 126, 3043–3056 (2022).

    Article 
    MATH 

    Google Scholar 

  55. Du, X. et al. Machine-learning-accelerated simulations to enable automatic surface reconstruction. Nat. Comput. Sci. 3, 1034–1044 (2023).

    Article 
    MATH 

    Google Scholar 

  56. Han, J., Zhang, L., Car, R. & Weinan, E. Deep potential: a general representation of a many-body potential energy surface. Commun. Comput. Phys. 23, 629–639 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  57. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  58. Fan, Z. et al. GPUMD: a package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. J. Chem. Phys. 157, 114801 (2022).

    Article 
    MATH 

    Google Scholar 

  59. Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 35, 11423–11436 (2022).

    MATH 

    Google Scholar 

  60. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article 
    MATH 

    Google Scholar 

  61. Ran, Y. et al. Towards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation. npj Comput. Mater. 7, 184 (2021).

    Article 
    MATH 

    Google Scholar 

  62. Gao, P., Wang, S., Lv, J., Wang, Y. & Ma, Y. A database assisted protein structure prediction method via a swarm intelligence algorithm. RSC Adv. 7, 39869–39876 (2017).

    Article 
    MATH 

    Google Scholar 

  63. Ahnert, S. E., Grant, W. P. & Pickard, C. J. Revealing and exploiting hierarchical material structure through complex atomic networks. npj Comput. Mater. 3, 35 (2017).

    Article 

    Google Scholar 

  64. Yoshikawa, N. & Hutchison, G. R. Fast, efficient fragment-based coordinate generation for Open Babel. J. Cheminform. 11, 49 (2019).

    Article 
    MATH 

    Google Scholar 

  65. Deaven, D. M. & Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995).

    Article 
    MATH 

    Google Scholar 

  66. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

    Article 
    MATH 

    Google Scholar 

  67. Gao, H., Wang, J., Guo, Z. & Sun, J. Determining dimensionalities and multiplicities of crystal nets. npj Comput. Mater. 6, 143 (2020).

    Article 
    MATH 

    Google Scholar 

  68. Arenas, A., Fernández, A. & Gómez, S. Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10, 053039 (2008).

    Article 
    MATH 

    Google Scholar 

  69. Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    Article 
    MATH 

    Google Scholar 

  70. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

    Article 
    MATH 

    Google Scholar 

  71. Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005).

    Article 
    MATH 

    Google Scholar 

  72. Fortunato, S. & Newman, M. E. J. 20 years of network community detection. Nat. Phys. 18, 848–850 (2022).

    Article 
    MATH 

    Google Scholar 

  73. Brunner, G. An unconventional view of the closest sphere packings. Acta Crystallogr. A 27, 388–390 (1971).

    Article 
    MATH 

    Google Scholar 

  74. Lewis, G. V. & Catlow, C. R. A. Potential models for ionic oxides. J. Phys. C 18, 1149 (1985).

    Article 
    MATH 

    Google Scholar 

  75. Fang, C. M. & de With, G. Crystal structure and chemical bonding of the high-pressure phase of MgAl2O4 from first-principles calculations. Philos. Mag. A 82, 2885–2894 (2002).

    MATH 

    Google Scholar 

  76. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article 

    Google Scholar 

  77. Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity: crossover from cubic to tetragonal lattice. Phys. Rev. B 66, 224504 (2002).

    Article 

    Google Scholar 

  78. Paul, R., Hu, S. X. & Karasiev, V. V. Anharmonic and anomalous trends in the high-pressure phase diagram of silicon. Phys. Rev. Lett. 122, 125701 (2019).

    Article 

    Google Scholar 

  79. Fredericks, S., Parrish, K., Sayre, D. & Zhu, Q. PyXtal: a Python library for crystal structure generation and symmetry analysis. Comput. Phys. Commun. 261, 107810 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  80. Wales, D. J. Symmetry, near-symmetry and energetics. Chem. Phys. Lett. 285, 330–336 (1998).

    Article 
    MATH 

    Google Scholar 

  81. Togo, A., Shinohara, K. & Tanaka, I. Spglib: a software library for crystal symmetry search. Sci. Technol. Adv. Mater. Methods 4, 2384822 (2024).

    MATH 

    Google Scholar 

  82. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article 
    MATH 

    Google Scholar 

  83. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  84. Brandes, U. On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008).

    Article 
    MATH 

    Google Scholar 

  85. Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977).

    Article 
    MATH 

    Google Scholar 

  86. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 
    MATH 

    Google Scholar 

  87. Hagberg, A., Swart, P. & Chult, D. S. Exploring Network Structure, Dynamics, and Function using NetworkX (Los Alamos National Laboratory, 2008).

  88. Xie, J., Kelley, S. & Szymanski, B. K. Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45, 1–35 (2013).

    Article 
    MATH 

    Google Scholar 

  89. Zhu, Q., Sharma, V., Oganov, A. R. & Ramprasad, R. Predicting polymeric crystal structures by evolutionary algorithms. J. Chem. Phys. 141, 154102 (2014).

    Article 

    Google Scholar 

  90. Tom, R. et al. Genarris 2.0: a random structure generator for molecular crystals. Comput. Phys. Commun. 250, 107170 (2020).

    Article 
    MATH 

    Google Scholar 

  91. Han, Y. et al. Source code and demo of MAGUS (Machine Learning and Graph Theory Assisted Universal Structure Searcher) v2.0.0. Zenodo https://doi.org/10.5281/zenodo.14730874 (2025).

  92. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 
    MATH 

    Google Scholar 

Download references

Acknowledgements

We thank Z. Fan and Y. Wang for fruitful discussion regarding NEP usage. We gratefully acknowledge the financial support from the National Key R&D Program of China (grant number 2022YFA1403201), the National Natural Science Foundation of China (grants T2495231, 12125404 and 123B2049), the Basic Research Program of Jiangsu (grants BK20233001 and BK20241253), the Jiangsu Funding Program for Excellent Postdoctoral Talent (grants 2024ZB002 and 2024ZB075), the Postdoctoral Fellowship Program of CPSF (grant GZC20240695), the AI & AI for Science program of Nanjing University, and the Fundamental Research Funds for the Central Universities. The calculations were carried out using supercomputers at the High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures and the high-performance supercomputing center of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and C.D. implemented the code, collected and analyzed the data, and led the paper preparation. J. Shi, S.Y., Q.J. and S.P. provided feedback throughout the process, and assisted with the paper writing. J. Sun, H.G. and J.W. conceived the project, supervised the research and contributed to securing funding. All authors participated in the discussion of the results and the writing of the paper.

Corresponding authors

Correspondence to
Junjie Wang, Hao Gao or Jian Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The symmetry principle in crystal structure prediction for the MgAl2O4 system.

(a) Space group distribution (P1 structures are excluded) and corresponding enthalpy of 3580 local relaxed structures of MgAl2O4, whose initial states are 20 random generated structures for each specific space group. The relaxed structures show a preference for certain space group symmetry. (b) Group-subgroup relationships between the preferred space groups. Each pair of group-subgroup relations with index<4 is connected by an arrow and the space group of GM is colored in red. (c) Spacegoup distribution of resultant structures obtained from applying symmetry-kept rattle mutation to a single metastable Pnma phase followed by local relaxation (duplicates of parent structure are excluded). The subfigure shows the view of the parent and two offsprings. It could conclude that most offsprings lowered their symmetry than parent after local relaxation. (d) A possible explanation can be derived from the double well model PES. When a high symmetry phase locates surrounding by multi lower energy lower symmetry local minima, its symmetry is prone to breaking. The red atoms represent O, the orange atoms represent Mg, and the cyan atoms represent Al.

Source data

Extended Data Fig. 2 Illustration of graph-theory-based structure decomposition method.

(a) Structure of α-B, the boron fragments obtained and their ranking indicators (uniqueness, description length). The two inequivalent atoms in α-B are marked by solid circles of different colors. (b) The ‘neighborhood’ structure within a certain distance and step cutoff of the selected atom marked by magenta. (c) Impact of cutoff parameters for building α-B ‘neighborhood’ structures. As the distance and step cutoff decrease, the time cost decreases as less fragments are identified. The B12 icosahedra can only be found with distance cutoff no less than 4 Å and step cutoff no less than 3, marked by yellow line. (d) Structure of the fibrous red phosphorous and the decomposed fragments. (e) Structure of graphene and the decomposed fragments. (f) The B12 icosahedra community (iv), has the most uniformly distributed betweenness centrality, and appending any neighbor atom to it (i-iii) will disrupt this uniformity. Therefore, the ‘uniqueness’ of betweenness centrality is employed as one of the indicators for fragment ranking. Atoms that have same betweenness centrality are same colored, with the specific values of betweenness centrality indicated in the legend at the bottom of the figure.

Extended Data Fig. 3 Structure of the red phosphorus allotropes and the success rate for identifying them.

(a) Fibrous P structure. Several structures exhibiting characteristics similar to other stable experimental structures are selected and labeled as (ii-vi). The success rate is calculated for identifying structures with machine learning potential energy lower than or equal to that of these reference structures. (b) Violet P structure and the corresponding success rates. The reference structures are shown in Supplementary Fig. 1(d).

Source data

Extended Data Fig. 4 Different representative metastable Si (111)-(7×7) surface reconstruction models found by MAGUS having 96-108 atoms in the surface region.

The surface energy, space group symmetry, and number of atoms in the reconstruction region are indicated. A deeper color and larger atoms represent the upper surface, while lighter color and smaller atoms represent the substrate. The surface energy of reference DAS model is set to 0. More metastable structures are shown in Supplementary Fig. 2.

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Figs. 1–6 and Tables 1–4.

Peer Review File

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Ding, C., Wang, J. et al. Efficient crystal structure prediction based on the symmetry principle.
Nat Comput Sci (2025). https://doi.org/10.1038/s43588-025-00775-z

Download citation

  • Received: 16 March 2024

  • Accepted: 28 January 2025

  • Published: 27 February 2025

  • DOI: https://doi.org/10.1038/s43588-025-00775-z


Leave a Reply

Your email address will not be published. Required fields are marked *