How a Simple Worm May Hold the Key to Stopping Parkinson’s and Alzheimer’s


Alzheimers Dementia Brain Disease Concept
Research on the simple organism Caenorhabditis elegans has led to significant insights into neurodegenerative diseases by studying the gene swip-10, which influences copper homeostasis and could impact treatments for conditions like Parkinson’s and Alzheimer’s disease.

Scientists discovered a link between copper regulation and neurodegeneration, using the worm gene swip-10. Their findings suggest that restoring copper balance could offer new treatments for disorders like Parkinson’s and <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Alzheimer’s
Alzheimer's disease is a progressive neurological disorder that primarily affects older adults, leading to memory loss, cognitive decline, and behavioral changes. It is the most common cause of dementia. The disease is characterized by the buildup of amyloid plaques and tau tangles in the brain, which disrupt cell function and communication. There is currently no cure, and treatments focus on managing symptoms and improving quality of life.

” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>Alzheimer’s disease.

Research on simple organisms frequently paves the way for new therapeutic breakthroughs. A notable example is the 2020 Nobel Prize in Chemistry, awarded to Emmanuelle Charpentier, Ph.D., and Jennifer Doudna, Ph.D., for their discovery of CRISPR-based <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

DNA
DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>DNA editing. This groundbreaking work, which originated from studies using bacteria just a decade earlier, has since led to CRISPR therapies being approved for multiple disorders, with more treatments on the horizon.

Recognizing the translational potential of studies in simpler animal models, a team of scientists led by Randy D. Blakely, Ph.D., at Florida Atlantic University’s Schmidt College of Medicine and FAU Stiles-Nicholson Brain Institute, have taken an important step that may lead to treatments for human neurodegenerative disorders. Their work begins with a tiny, inauspicious roundworm.

The Role of Caenorhabditis elegans in Neuroscience Research

Formally known as Caenorhabditis elegans, the nematode is a favorite of neuroscientists seeking to identify and manipulate genes that impact neural signaling and health.

In a new study, published in the Proceedings of the National Academy of Sciences, Blakely and colleagues link the function of the worm gene swip-10 to the control of copper. While known for its use in electrical wiring, pots, pans and jewelry, copper also is a vital micronutrient that plays several essential roles in all cells, including those of the human brain.

Nematodes Circle Brain Graphic
The tiny, inauspicious roundworm is a favorite of neuroscientists seeking to identify and manipulate genes that impact neural signaling and health. Credit: Riya Sheokand

“Copper is required for the function of mitochondria, the powerhouse of cells, and its production of the energy-storing molecule ATP, which fuels hundreds of vital body functions such as muscle contraction, digestion and heart function as well as the signaling of brain neurons that allows us to think and feel,” said Blakely, senior author, and David J.S. Nicholson Distinguished Professor in Neuroscience at FAU. “Copper also helps protect cells from harmful molecules termed reactive oxygen <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

species
A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>species, or ROS, which in excess can damage proteins and DNA, ultimately driving cell death, including neurons that die in Parkinson’s and Alzheimer’s disease.”

Copper’s Role in Cellular Health and the swip-10 Gene

Copper exists mainly in two forms: cuprous copper (termed Cu(I)) and cupric copper (termed Cu(II)). These two forms are managed by different proteins in the body and can be converted from one to the other to support various chemical reactions vital to human health. Scientists are still studying how the body maintains the right balance between these two copper forms, which is important, as too much or too little of either can wreak havoc on cells, particularly neurons. This is where swip-10 enters the picture.

Blakely’s worm team, led by former member Andrew Hardaway, Ph.D., reported the identification of the swip-10 gene in 2015, following a screen for molecules needed to control the activity of worm <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

dopamine
Dopamine is a crucial neurotransmitter involved in many important functions in the brain, particularly those related to pleasure, reward, motivation, and motor control. It plays a central role in the brain's reward system, where it helps reinforce rewarding behaviors by increasing pleasure and satisfaction, making it critical for habit formation and addictive behaviors. Dopamine is also vital for regulating movement, and deficiencies in dopamine production are linked to neurological disorders such as Parkinson's disease. Additionally, dopamine influences various other functions, including mood regulation, learning, and attention, making it a key focus in studies of both mental health and neurodegenerative diseases.

” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>dopamine neurons, specifically those that control their ability to swim.

“Worms with a damaging mutation in swip-10 initially swim normally, but unlike normal worms whose swimming continues for 30 minutes or more, in less than a minute, the mutants display swimming-induced paralysis or Swip,” said Blakely. “We tracked the paralysis to an excess activity of their dopamine neurons and published what we thought was a fairly complete story.”

But further studies by another past graduate student in the Blakely lab, Chelsea Gibson, Ph.D., showed that the overactive dopamine neurons in swip-10 mutants exhibit degeneration much earlier in life than normal worms, as seen in Parkinson’s disease (PD). Other types of neurons in swip-10 mutant worms besides those making dopamine also demonstrate degeneration, suggesting to Blakely’s team that links to brain disease might mirror other neurodegenerative disorders besides PD.

Copper, Histones, and Neuronal Health

A clue to such disorders came with the decoding of the swip-10 gene sequence where Blakely’s team found that humans possess a gene highly related to swip-10, termed MBLAC1. Then, in 2019, geneticist Iris Broce, Ph.D., at the University of California, San Francisco, fingered MBLAC1 as a risk factor for a particular form of Alzheimer’s disease (AD), one accompanied by <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

cardiovascular disease
Cardiovascular disease (CVD) encompasses a range of disorders affecting the heart and blood vessels, including coronary artery disease, heart attack, stroke, and hypertension. These conditions are primarily driven by atherosclerosis, a process where plaque builds up in the arterial walls, leading to narrowed or blocked arteries. Risk factors include smoking, unhealthy diet, lack of exercise, obesity, and genetic predisposition. CVD remains a leading cause of global mortality, emphasizing the importance of lifestyle changes, medical interventions, and preventive measures in managing and reducing the risk of heart-related illnesses.

” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>cardiovascular disease (AD-CDV). Importantly, they also found a significant reduction in MBLAC1 expression in the frontal cortex of humans with AD-CDV, suggesting a role for MBLAC1 in supporting the health of both the brain and peripheral organs such as the heart. So where is the copper link?

“It turns out that MBLAC1 encodes an enzyme key to the production of another class of proteins, termed histones, well known to compact long strands of DNA so they can form chromosomes,” said Blakely.

But certain histones possess an additional, surprising activity, the ability to convert Cu(II) to Cu(I), and when mutations in these proteins were generated by Narsis Attar, M.D., Ph.D., at the University of California, Los Angeles, these cells show much lower production of Cu(I), higher amounts of ROS, their mitochondria function poorly, and they fail to thrive.

The Impact of swip-10 on Copper and Neuron Health

Connecting the dots across the years, Peter Rodriguez Jr., a current graduate student and lead scientist on the study in the Blakely lab, reasoned that swip-10 mutants also would fail to produce the requisite histones, leading to a loss of Cu(I), mitochondrial dysfunction, and an elevation of ROS, which could be a major reason the worm’s dopamine neuron die. In the new study, Rodriguez Jr., and collaborators show that this is indeed the case, and moreover, find that they can rescue ATP production, reduce ROS, and promote survival of dopamine neurons by supplementing their diet with Cu(I) or by exposing them to a drug known to increase Cu(I) levels in cells.

“Surprisingly, the impact of loss of swip-10 on Cu(I), worm bioenergetics, and oxidative stress is not just an impact felt by dopamine neurons,” said Rodriguez Jr. “Rather, Cu(I) levels, and these good things that Cu(I) does, are greatly diminished body-wide. Another striking finding is that though changes occur with Cu(I) and its actions across the body, these deficits arise from the loss of swip-10 from a small number of cells in the head of the animal known as glia, which make up only 5% of the cells in the animal’s body.”

Glial cells are well known to support the signaling and health of neurons in many organisms. Indeed, in the worm, Rodriguez Jr. could restore the health of worms, as well as whole body Cu(I) levels, by expressing a normal copy of the swip-10 gene only in glial cells.

“The powerful control of Cu(I) exerted by swip-10 points to a novel opportunity to sustain neuronal health,” said Blakely.

Interestingly, the antibiotic ceftriaxone, which the Blakely lab found to bind MBLAC1 protein, has been reported by multiple groups to be neuroprotective in vitro and in animal models, though its mechanism of action is currently unclear. Blakely’s team believes ceftriaxone’s action relates to modulating copper homeostasis.

“Ceftriaxone isn’t a particularly powerful drug, doesn’t get into the brain very well compared to other medications, and can cause antibiotic resistance and other side-effects. So it’s not surprising that it hasn’t proved useful in the clinic,” said Blakely. “Perhaps now that we have a better idea as to what swip-10 and MBLAC1 do, we think that we may be able to design a truly useful medication to treat neurodegenerative disease.”

Reference: “Glial swip-10 controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis” by Peter Rodriguez, Vrinda Kalia, Cristina Fenollar-Ferrer, Chelsea L. Gibson, Zayna Gichi, Andre Rajoo, Carson D. Matier, Aidan T. Pezacki, Tong Xiao, Lucia Carvelli, Christopher J. Chang, Gary W. Miller, Andy V. Khamoui, Jana Boerner and Randy D. Blakely, 17 September 2024, Proceedings of the National Academy of Sciences.
DOI: 10.1073/pnas.2320611121

The research was supported by Steven and Deborah Schmidt, the Florida Department of Health, and a pilot award from the FAU Mangurian Center for Brain Health (awarded to Blakely), and the <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

National Institutes of Health
The National Institutes of Health (NIH) is the primary agency of the United States government responsible for biomedical and public health research. Founded in 1887, it is a part of the U.S. Department of Health and Human Services. The NIH conducts its own scientific research through its Intramural Research Program (IRP) and provides major biomedical research funding to non-NIH research facilities through its Extramural Research Program. With 27 different institutes and centers under its umbrella, the NIH covers a broad spectrum of health-related research, including specific diseases, population health, clinical research, and fundamental biological processes. Its mission is to seek fundamental knowledge about the nature and behavior of living systems and the application of that knowledge to enhance health, lengthen life, and reduce illness and disability.

” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>National Institutes of Health (awarded to Miller, Kalia and Chang).


Leave a Reply

Your email address will not be published. Required fields are marked *