Abstract
Humans reason implicitly and explicitly about the physical world, which enables them to successfully interact with and manipulate objects in their environment. This reasoning is studied under different names across three main literatures: education, developmental psychology and cognitive science. At a high level, education researchers examine the acquisition of formal scientific knowledge, developmental psychologists explore children’s emerging understanding of their physical surroundings and cognitive scientists analyse the structure of the mind. These different disciplines have reached divergent conclusions about what children and adults know about ‘cognitive mechanics’ and developed parallel scientific theories of these phenomena. In this Review, we describe the findings of these three literatures and conclude that each literature contributes robust and reliable findings that must be taken seriously even when they seem to be contradictory. We suggest that further progress requires reconciling these literatures; one avenue is to consider multiple interlocking cognitive mechanisms that are differentially engaged across scenarios and across development. Finally, we outline a research programme to further reconcile these literatures.
This is a preview of subscription content, access via your institution
Access options
/* style specs end */
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */




References
-
Chung, T. H., Orekhov, V. & Maio, A. Into the robotic depths: analysis and insights from the DARPA Subterranean Challenge. Annu. Rev. Control Robot. Auton. Syst. 6, 477–502 (2023).
Google Scholar
-
Garrett, C. R. et al. Integrated task and motion planning. Annu. Rev. Control Robot. Auton. Syst. 4, 265–293 (2021).
Google Scholar
-
Riochet, R. et al. Intphys 2019: a benchmark for visual intuitive physics understanding. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5016–5025 (2021).
Google Scholar
-
Kubricht, J. R., Holyoak, K. J. & Lu, H. Intuitive physics: current research and controversies. Trends Cogn. Sci. 21, 749–759 (2017).
Google Scholar
-
McCloskey, M. Intuitive physics. Sci. Am. 248, 122–131 (1983). A seminal paper that kicked off research on cognitive mechanics.
Google Scholar
-
Inhelder, B. & Piaget, J. The Growth of Logical Thinking From Childhood To Adolescence: An Essay On The Construction of Formal Operational Structures. (Psychology Press, 1958).
-
Karmiloff-Smith, A. & Inhelder, B. If you want to get ahead, get a theory. Cognition 3, 195–212 (1974). An early and compelling proposal within the theory-change framework.
Google Scholar
-
McCloskey, M., Caramazza, A. & Green, B. Curvilinear motion in the absence of external forces: naive beliefs about the motion of objects. Science 210, 1139–1141 (1980).
Google Scholar
-
Shanon, B. Aristotelianism, Newtonianism and the physics of the layman. Perception 5, 241–243 (1976).
Google Scholar
-
Clement, J. Students’ preconceptions in introductory mechanics. Am. J. Phys. 50, 66–71 (1982).
Google Scholar
-
Driver, R. & Easley, J. Pupils and paradigms: a review of literature related to concept development in adolescent science students. https://doi.org/10.1080/03057267808559857 (1978).
-
Minstrell, J. Explaining the ‘at rest’ condition of an object. Phys. Teach. 20, 10–14 (1982).
Google Scholar
-
Viennot, L. Spontaneous reasoning in elementary dynamics. Eur. J. Sci. Educ. 1, 205–221 (1979).
Google Scholar
-
Siegler, R. S. Three aspects of cognitive development. Cogn. Psychol. 8, 481–520 (1976).
Google Scholar
-
Ullman, T. D., Spelke, E., Battaglia, P. & Tenenbaum, J. B. Mind games: game engines as an architecture for intuitive physics. Trends Cogn. Sci. 21, 649–665 (2017).
Google Scholar
-
Zago, M. & Lacquaniti, F. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. J. Neural Eng. 2, 198 (2005).
Google Scholar
-
Vicovaro, M. Intuitive physics and cognitive algebra: a review. Eur. Rev. Appl. Psychol. 71, 100610 (2021). One of the most compelling expositions of the information integration theory, a proposal that deserves careful consideration.
Google Scholar
-
Hast, M. & Howe, C. Children’s predictions and recognition of fall: the role of object mass. Cogn. Dev. 36, 103–110 (2015).
Google Scholar
-
Lin, Y., Stavans, M. & Baillargeon, R. in Cambridge Handbook of Cognitive Development (eds Houdé, O. & Borst, G.) 168–194 (Cambridge Univ. Press, 2022). A review of the literature on cognitive mechanics in infants.
-
Baillargeon, R. Innate ideas revisited: for a principle of persistence in infants’ physical reasoning. Perspect. Psychol. Sci. 3, 2–13 (2008).
Google Scholar
-
Spelke, E. S. Principles of object perception. Cogn. Sci. 14, 29–56 (1990).
Google Scholar
-
Xu, F. Towards a rational constructivist theory of cognitive development. Psychol. Rev. 126, 841 (2019). A proposal in the theory-change tradition that deserves careful consideration.
Google Scholar
-
Vosniadou, S. The development of students’ understanding of science. Front. Educ. 4, 32 (2019).
Google Scholar
-
Stoen, S. M. et al. Force concept inventory: more than just conceptual understanding. Phys. Rev. Phys. Educ. Res. 16, 010105 (2020).
Google Scholar
-
Laverty, J. T. & Caballero, M. D. Analysis of the most common concept inventories in physics: what are we assessing? Phys. Rev. Phys. Educ. Res. 14, 010123 (2018).
Google Scholar
-
Crouch, C. H. & Mazur, E. Peer instruction: ten years of experience and results. Am. J. Phys. 69, 970–977 (2001). This paper illustrates just how profound an impact concept inventories have had in physics education.
Google Scholar
-
Resbiantoro, G. et al. A review of misconception in physics: the diagnosis, causes, and remediation. J. Turk. Sci. Educ. 19, 2 (2022).
-
Brown, D. E. & Hammer, D. in International Handbook of Research on Conceptual Change 1st edn (ed. Vosniadou, S.) 155–182 (Routledge, 2009). A helpful review of the knowledge-in-pieces framework.
-
Hammer, D. in Converging Perspectives on Conceptual Change: Mapping an Emerging Paradigm in the Learning Sciences 1st edn (eds Amin, T. G. & Levrini, O.) 245–252 (Routledge, 2017).
-
Chi, M. T. in International Handbook of Research on Conceptual Change 2nd edn (ed. Vosniadou, S.) 49–70 (Routledge, 2013).
-
Muller, D. A., Bewes, J., Sharma, M. D. & Reimann, P. Saying the wrong thing: improving learning with multimedia by including misconceptions. J. Comput. Assist. Learn. 24, 144–155 (2008).
Google Scholar
-
diSessa, A. A. in The Cambridge Handbook of the Learning Sciences (ed. Sawyer, R.K.) 88–108 (Cambridge Univ. Press, 2014).
-
Vicovaro, M. Grounding intuitive physics in perceptual experience. J. Intell. 11, 187 (2023).
Google Scholar
-
Hubbard, T. L. The possibility of an impetus heuristic. Psychon. Bull. Rev. 29, 2015–2033 (2022).
Google Scholar
-
Brown, D. E. Students’ conceptions — coherent or fragmented? And what difference does it make. In Annual International Conf. National Association for Research in Science Teaching (Philadelphia, 2010).
-
Brown, D. E. Students’ conceptions as dynamically emergent structures. Sci. Educ. 23, 1463–1483 (2014).
Google Scholar
-
Hegarty, M. Mechanical reasoning by mental simulation. Trends Cogn. Sci. 8, 280–285 (2004).
Google Scholar
-
Battaglia, P. W., Hamrick, J. B. & Tenenbaum, J. B. Simulation as an engine of physical scene understanding. Proc. Natl Acad. Sci. USA 110, 18327–18332 (2013). This seminal paper introduced the video game engine in the head approach.
Google Scholar
-
Mitko, A. & Fischer, J. Do striking biases in mass inference reflect a flawed mental model of physics? J. Exp. Psychol. Gen. 152, 2636 (2023).
Google Scholar
-
Hamrick, J. B., Battaglia, P. W., Griffiths, T. L. & Tenenbaum, J. B. Inferring mass in complex scenes by mental simulation. Cognition 157, 61–76 (2016).
Google Scholar
-
Sanborn, A. N., Mansinghka, V. K. & Griffiths, T. L. Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychol. Rev. 120, 411 (2013). This paper was instrumental in prompting researchers in cognitive science to consider the possibility that adult humans do not have mechanics misconceptions.
Google Scholar
-
Smith, K., Battaglia, P. & Tenenbaum, J. Integrating heuristic and simulation-based reasoning in intuitive physics. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/bckes (2023).
-
Ludwin-Peery, E., Bramley, N. R., Davis, E. & Gureckis, T. M. Broken physics: a conjunction-fallacy effect in intuitive physical reasoning. Psychol. Sci. 31, 1602–1611 (2020). This paper provides an excellent exposition on the theoretical and empirical debates in the contemporary cognitive science literature.
Google Scholar
-
Smith, K. A., Battaglia, P. W. & Vul, E. Different physical intuitions exist between tasks, not domains. Comput. Brain Behav. 1, 101–118 (2018). One of the most systematic investigations of task effects, which suggests that the nature of the task has large effects on cognitive mechanics judgements.
Google Scholar
-
Neupärtl, N., Tatai, F. & Rothkopf, C. A. Naturalistic embodied interactions elicit intuitive physical behaviour in accordance with Newtonian physics. Cogn. Neuropsychol. 38, 440–454 (2021).
Google Scholar
-
Davis, E. & Marcus, G. The scope and limits of simulation in automated reasoning. Artif. Intell. 233, 60–72 (2016).
Google Scholar
-
Hespos, S. J. & VanMarle, K. Physics for infants: characterizing the origins of knowledge about objects, substances, and number. Wiley Interdiscip. Rev. Cogn. Sci. 3, 19–27 (2012).
Google Scholar
-
Proffitt, D. R., Kaiser, M. K. & Whelan, S. M. Understanding wheel dynamics. Cogn. Psychol. 22, 342–373 (1990).
Google Scholar
-
Hestenes, D., Wells, M. & Swackhamer, G. Force concept inventory. Phys. Teach. 30, 141–158 (1992). Seminal paper that introduced the most widely used concept inventory.
Google Scholar
-
Eaton, P. & Willoughby, S. D. Confirmatory factor analysis applied to the force concept inventory. Phys. Rev. Phys. Educ. Res. 14, 010124 (2018).
Google Scholar
-
Scott, T. F., Schumayer, D. & Gray, A. R. Exploratory factor analysis of a force concept inventory data set. Phys. Rev. Spec. Top. Phys. Educ. Res. 8, 020105 (2012).
Google Scholar
-
Sands, D., Parker, M., Hedgeland, H., Jordan, S. & Galloway, R. Using concept inventories to measure understanding. High. Educ. Pedagog. 3, 173–182 (2018).
Google Scholar
-
Libarkin, J. Concept inventories in higher education science. In BOSE Conf. 1–10 (2008).
-
Madsen, A., McKagan, S. B. & Sayre, E. C. Best practices for administering concept inventories. Phys. Teach. 55, 530–536 (2017).
Google Scholar
-
Scott, T. F. & Schumayer, D. Conceptual coherence of non-Newtonian worldviews in force concept inventory data. Phys. Rev. Phys. Educ. Res. 13, 010126 (2017).
Google Scholar
-
Caballero, M. D. et al. Comparing large lecture mechanics curricula using the force concept inventory: a five thousand student study. Am. J. Phys. 80, 638–644 (2012).
Google Scholar
-
Pinker, S. The Stuff of Thought: Language as a Window into Human Nature (Penguin, 2007).
-
Piaget, J. La Représentation du Monde Chez L’enfant. Vol. 3 (Payot, 1926).
-
Kuhn, T. S. The Structure of Scientific Revolutions 1st edn (Univ. Chicago Press, 1962).
-
Halloun, I. A. & Hestenes, D. The initial knowledge state of college physics students. Am. J. Phys. 53, 1043–1055 (1985).
Google Scholar
-
Gunstone, R. & Watts, M. in Children’s Ideas in Science (eds Driver, R. et al.) 85–104 (Open Univ. Press, 1985).
-
Carey, S. Conceptual Change in Childhood (MIT Press, 1985).
-
Carey, S. The Origin of Concepts (Oxford Univ. Press, 2009).
-
Carey, S. & Spelke, E. in Mapping the Mind: Domain Specificity in Cognition and Culture (eds Hirschfeld, L. A. & Gelman, S. A.) 169–200 (Cambridge Univ. Press, 1994).
-
Maclin, D., Grosslight, L. & Davis, H. Teaching for understanding: a study of students’ preinstruction theories of matter and a comparison of the effectiveness of two approaches to teaching about matter and density. Cogn. Instr. 15, 317–393 (1997).
Google Scholar
-
Wiser, M. in Software Goes to School: Teaching for Understanding with New Technologies (eds Perkins, D. N. e al.) 23–38 (Oxford Univ. Press, 1995).
-
Bascandziev, I. Thought experiments as an error detection and correction tool. Cogn. Sci. 48, 13401 (2024). Compelling for its large sample size and careful experimental design, this paper suggests that not all intuitive physics simulations are the same.
Google Scholar
-
Kelemen, D., Rottman, J. & Seston, R. Professional physical scientists display tenacious teleological tendencies: purpose-based reasoning as a cognitive default. J. Exp. Psychol. Gen. 142, 1074 (2013).
Google Scholar
-
Thornton, R. K., Kuhl, D., Cummings, K. & Marx, J. Comparing the force and motion conceptual evaluation and the force concept inventory. Phys. Rev. Spec. Top. Phys. Educ. Res. 5, 010105 (2009).
Google Scholar
-
Rosenblatt, R. & Heckler, A. F. Systematic study of student understanding of the relationships between the directions of force, velocity, and acceleration in one dimension. Phys. Rev. Phys. Educ. Res. 7, 020112 (2011).
Google Scholar
-
Morley, A., Nissen, J. M. & Van Dusen, B. Measurement invariance across race and gender for the force concept inventory. Phys. Rev. Phys. Educ. Res. 19, 020102 (2023).
Google Scholar
-
Yang, J., Zabriskie, C. & Stewart, J. Multidimensional item response theory and the force and motion conceptual evaluation. Phys. Rev. Phys. Educ. Res. 15, 020141 (2019).
Google Scholar
-
Hake, R. R. Interactive-engagement versus traditional methods: a six-thousand-student survey of mechanics test data for introductory physics courses. Am. J. Phys. 66, 64–74 (1998).
Google Scholar
-
Santoso, P. H. et al. Exploring gender differences in the force concept inventory using a random effects meta-analysis of international studies. Phys. Rev. Phys. Educ. Res. 20, 010601 (2024).
Google Scholar
-
Stewart, J. et al. Mediational effect of prior preparation on performance differences of students underrepresented in physics. Phys. Rev. Phys. Educ. Res. 17, 010107 (2021).
Google Scholar
-
Von Korff, J. et al. Secondary analysis of teaching methods in introductory physics: a 50 k-student study. Am. J. Phys. 84, 969–974 (2016).
Google Scholar
-
Hoellwarth, C., Moelter, M. J. & Knight, R. D. A direct comparison of conceptual learning and problem solving ability in traditional and studio style classrooms. Am. J. Phys. 73, 459–462 (2005).
Google Scholar
-
Semak, M., Dietz, R., Pearson, R. & Willis, C. Examining evolving performance on the force concept inventory using factor analysis. Phys. Rev. Phys. Educ. Res. 13, 010103 (2017).
Google Scholar
-
Stewart, J., Zabriskie, C., DeVore, S. & Stewart, G. Multidimensional item response theory and the force concept inventory. Phys. Rev. Phys. Educ. Res. 14, 010137 (2018).
Google Scholar
-
Eaton, P. & Willoughby, S. Identifying a preinstruction to postinstruction factor model for the force concept inventory within a multitrait item response theory framework. Phys. Rev. Phys. Educ. Res. 16, 010106 (2020).
Google Scholar
-
Stewart, J. et al. Examining the relation of correct knowledge and misconceptions using the nominal response model. Phys. Rev. Phys. Educ. Res. 17, 010122 (2021).
Google Scholar
-
Lasry, N., Rosenfield, S., Dedic, H., Dahan, A. & Reshef, O. The puzzling reliability of the force concept inventory. Am. J. Phys. 79, 909–912 (2011).
Google Scholar
-
Wang, J. & Bao, L. Analyzing force concept inventory with item response theory. Am. J. Phys. 78, 1064–1070 (2010).
Google Scholar
-
Huffman, D. & Heller, P. What does the force concept inventory actually measure? Phys. Teach. 33, 138–143 (1995).
Google Scholar
-
Henderson, C. Common concerns about the force concept inventory. Phys. Teach. 40, 542–547 (2002).
Google Scholar
-
Maries, A. & Singh, C. Teaching assistants’ performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory. Phys. Rev. Phys. Educ. Res. 12, 010131 (2016).
Google Scholar
-
diSessa, A. A., Gillespie, N. M. & Esterly, J. B. Coherence versus fragmentation in the development of the concept of force. Cogn. Sci. 28, 843–900 (2004).
Google Scholar
-
diSessa, A. A. et al. in International Handbook of Research on Conceptual Change (ed. Vosniadou, S.) 31–48 (Routledge, 2008).
-
Cooke, N. J. & Breedin, S. D. Naive misconceptions of Cooke and Breedin’s research: response to ranney. Mem. Cognit. 22, 503–507 (1994).
Google Scholar
-
Kaiser, M. K., McCloskey, M. & Proffitt, D. R. Development of intuitive theories of motion: curvilinear motion in the absence of external forces. Dev. Psychol. 22, 67 (1986).
Google Scholar
-
Proffitt, D. R. & Gilden, D. L. Understanding natural dynamics. J. Exp. Psychol. Hum. Percept. Perform. 15, 384 (1989).
Google Scholar
-
Rohrer, D. Misconceptions about incline speed for nonlinear slopes. J. Exp. Psychol. Hum. Percept. Perform. 28, 963 (2002).
Google Scholar
-
Shtulman, A. & Lombrozo, T. in Core Knowledge and Conceptual Change (eds Barner, D. & Baron, A. S.) 53–72 (Oxford Univ. Press, 2016). This book provides compelling evidence that adults have both veridical and non-veridical cognitive mechanics.
-
Vosniadou, S. in International Handbook of Research on Conceptual Change 2nd edn (ed. Vosniadou, S.) 11–30 (Routledge, 2013).
-
Clark, D. B. & Linn, M. C. in International Handbook of Research on Conceptual Change 2nd edn (ed. Vosniadou, S.) 520–538 (Routledge, 2013).
-
Panagiotaki, G., Nobes, G. & Banerjee, R. Children’s representations of the earth: a methodological comparison. Br. J. Dev. Psychol. 24, 353–372 (2006).
Google Scholar
-
diSessa, A. A. in Constructivism in the Computer Age (eds Forman, G. & Pufall, P. B.) 49–70 (Psychology Press, 1988).
-
Hammer, D. Misconceptions or p-prims: how may alternative perspectives of cognitive structure influence instructional perceptions and intentions. J. Learn. Sci. 5, 97–127 (1996).
Google Scholar
-
Brown, D. E. Refocusing core intuitions: a concretizing role for analogy in conceptual change. J. Res. Sci. Teach. 30, 1273–1290 (1993).
Google Scholar
-
Conlin, L. D., Gupta, A. & Hammer, D. Framing and resource activation: bridging the cognitive-situative divide using a dynamic unit of cognitive analysis. In Proc. Annual Meeting of the Cognitive Science Society 32, (Cogn. Sci. 2010).
-
Kahneman, D. Thinking, Fast and Slow (Macmillan, 2011).
-
Heckler, A. F. in Psychology of Learning and Motivation: Cognition in Education (eds Mestre, J. P. & Ross, B. H.) 227–267 (Elsevier Academic Press, 2011).
-
Heckler, A. F. & Bogdan, A. M. Reasoning with alternative explanations in physics: the cognitive accessibility rule. Phys. Rev. Phys. Educ. Res. 14, 010120 (2018).
Google Scholar
-
Gette, C. R., Kryjevskaia, M., Stetzer, M. R. & Heron, P. R. Probing student reasoning approaches through the lens of dual-process theories: a case study in buoyancy. Phys. Rev. Phys. Educ. Res. 14, 010113 (2018).
Google Scholar
-
Gette, C. R. & Kryjevskaia, M. Establishing a relationship between student cognitive reflection skills and performance on physics questions that elicit strong intuitive responses. Phys. Rev. Phys. Educ. Res. 15, 010118 (2019).
Google Scholar
-
Speirs, J. C., Stetzer, M. R., Lindsey, B. A. & Kryjevskaia, M. Exploring and supporting student reasoning in physics by leveraging dual-process theories of reasoning and decision making. Phys. Rev. Phys. Educ. Res. 17, 020137 (2021).
Google Scholar
-
Wood, A. K., Galloway, R. K. & Hardy, J. Can dual processing theory explain physics students’ performance on the force concept inventory? Phys. Rev. Phys. Educ. Res. 12, 023101 (2016).
Google Scholar
-
Friedman, W. J. Arrows of time in early childhood. Child Dev. 74, 155–167 (2003).
Google Scholar
-
Hast, M. & Howe, C. Changing predictions, stable recognition: children’s representations of downward incline motion. Br. J. Dev. Psychol. 35, 516–530 (2017).
Google Scholar
-
Hespos, S. J. & Baillargeon, R. Young infants’ actions reveal their developing knowledge of support variables: converging evidence for violation-of-expectation findings. Cognition 107, 304–316 (2008).
Google Scholar
-
Kaiser, M. K. & Proffitt, D. R. The development of sensitivity to causally relevant dynamic information. Child Dev. 55, 1614–1624 (1984).
Google Scholar
-
Kim, I.-K. & Spelke, E. S. Perception and understanding of effects of gravity and inertia on object motion. Dev. Sci. 2, 339–362 (1999).
Google Scholar
-
Larsen, N. E., Venkadasalam, V. P. & Ganea, P. A. Prompting children’s belief revision about balance through primary and secondary sources of evidence. Front. Psychol. 11, 541958 (2020).
Google Scholar
-
Luo, Y., Kaufman, L. & Baillargeon, R. Young infants’ reasoning about physical events involving inert and self-propelled objects. Cogn. Psychol. 58, 441–486 (2009).
Google Scholar
-
Halford, G. S. et al. Young children’s performance on the balance scale: the influence of relational complexity. J. Exp. Child Psychol. 81, 417–445 (2002).
Google Scholar
-
Messer, D. J., Pine, K. J. & Butler, C. Children’s behaviour and cognitions across different balance tasks. Learn. Instr. 18, 42–53 (2008).
Google Scholar
-
Baillargeon, R. A model of physical reasoning in infancy. Adv. Infancy Res. 9, 305–371 (1995).
-
Baillargeon, R., Needham, A. & DeVos, J. The development of young infants’ intuitions about support. Early Dev. Parent. 1, 69–78 (1992).
Google Scholar
-
Krist, H. Development of intuitions about support beyond infancy. Dev. Psychol. 46, 266 (2010).
Google Scholar
-
Krist, H., Atlas, C., Fischer, H. & Wiese, C. Development of basic intuitions about physical support during early childhood: evidence from a novel eye-tracking paradigm. Q. J. Exp. Psychol. 71, 1988–2004 (2018).
Google Scholar
-
Hofman, A. D., Visser, I., Jansen, B. R. & Maas, H. L. The balance-scale task revisited: a comparison of statistical models for rule-based and information-integration theories of proportional reasoning. PLoS ONE 10, e0136449 (2015). One of the several papers that use modern statistical analysis to characterize development on the balance-scale task in the contemporary developmental literature.
Google Scholar
-
Jansen, B. R. & Maas, H. L. The development of children’s rule use on the balance scale task. J. Exp. Child Psychol. 81, 383–416 (2002).
Google Scholar
-
Siegler, R. S. & Chen, Z. Development of rules and strategies: balancing the old and the new. J. Exp. Child Psychol. 81, 446–457 (2002).
Google Scholar
-
Boom, J. & ter Laak, J. Classes in the balance: latent class analysis and the balance scale task. Dev. Rev. 27, 127–149 (2007). One of the several papers that use modern statistical analysis to characterize development on the balance-scale task in the contemporary developmental literature.
Google Scholar
-
Shultz, T. R. & Takane, Y. Rule following and rule use in the balance-scale task. Cognition 103, 460–472 (2007).
Google Scholar
-
Spelke, E. S. What Babies Know: Core Knowledge and Composition, Vol. 1 (Oxford Univ. Press, 2022). The first in a two-volume landmark synthesis of the core knowledge theory; although it covers much more than cognitive mechanics, it is worth reading in full.
-
Schapiro, A. C. & McClelland, J. L. A connectionist model of a continuous developmental transition in the balance scale task. Cognition 110, 395–411 (2009).
Google Scholar
-
Dandurand, F. & Shultz, T. R. A comprehensive model of development on the balance-scale task. Cogn. Syst. Res. 31, 1–25 (2014).
Google Scholar
-
Howe, C., Taylor Tavares, J. & Devine, A. Children’s conceptions of physical events: explicit and tacit understanding of horizontal motion. Br. J. Dev. Psychol. 32, 141–162 (2014).
Google Scholar
-
Mitko, A., Navarro-Cebrián, A., Cormiea, S. & Fischer, J. A dedicated mental resource for intuitive physics. iScience 27, 108607 (2024).
Google Scholar
-
Kaiser, M. K., Proffitt, D. R., Whelan, S. M. & Hecht, H. Influence of animation on dynamical judgments. J. Exp. Psychol. Hum. Percept. Perform. 18, 669 (1992).
Google Scholar
-
Hecht, H. Beyond illusions: on the limitations of perceiving relational properties. in Open MIND Vol. 18 (MIND Group, 2015).
-
Ludwin-Peery, E., Bramley, N. R., Davis, E. & Gureckis, T. M. Limits on simulation approaches in intuitive physics. Cogn. Psychol. 127, 101396 (2021).
Google Scholar
-
Smith, K. A. & Vul, E. Sources of uncertainty in intuitive physics. Top. Cogn. Sci. 5, 185–199 (2013).
Google Scholar
-
Lau, J. S.-H. & Brady, T. F. Noisy perceptual expectations: multiple object tracking benefits when objects obey features of realistic physics. J. Exp. Psychol. Hum. Percept. Perform. 46, 1280 (2020).
Google Scholar
-
Li, Y. et al. An approximate representation of objects underlies physical reasoning. J. Exp. Psychol. Gen. 152, 3074–3086 (2023). This paper provides a rich exposition of and evidence for the current resource-rational video game engine in the head account.
Google Scholar
-
Bass, I., Smith, K. A., Bonawitz, E. & Ullman, T. D. Partial mental simulation explains fallacies in physical reasoning. Cogn. Neuropsychol. 38, 413–424 (2021). This paper provides an excellent exposition on the theoretical and empirical debates in the contemporary cognitive science literature.
Google Scholar
-
Kosslyn, S. M., Thompson, W. L. & Ganis, G. The Case for Mental Imagery (Oxford Univ. Press, 2006).
-
Shepard, S. & Metzler, D. Mental rotation: effects of dimensionality of objects and type of task. J. Exp. Psychol. Hum. Percept. Perform. 14, 3 (1988).
Google Scholar
-
Hartshorne, J. The video game engine in your head. Sci. Am. https://www.scientificamerican.com/article/the-video-game-engine-in-your-head/ (2014).
-
Weitnauer, E., Goldstone, R. L. & Ritter, H. Perception and simulation during concept learning. Psychol. Rev. 130, 1203–1238 (2023).
Google Scholar
-
Ahuja, A., Desrochers, T. M. & Sheinberg, D. L. A role for visual areas in physics simulations. Cogn. Neuropsychol. 38, 425–439 (2021).
Google Scholar
-
Fischer, J. The Building Blocks of Intuitive Physics in the Mind and Brain (Taylor & Francis, 2021).
-
Masin, S. C. The cognitive and perceptual laws of the inclined plane. Am. J. Psychol. 129, 221–234 (2016).
Google Scholar
-
Gregory, J. Game Engine Architecture (AK Peters/CRC Press, 2018).
-
Lieder, F. & Griffiths, T. L. Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behav. Brain Sci. 43, e1 (2020).
Google Scholar
-
Ho, M. K. et al. People construct simplified mental representations to plan. Nature 606, 129–136 (2022).
Google Scholar
-
Kozhevnikov, M. & Hegarty, M. Impetus beliefs as default heuristics: dissociation between explicit and implicit knowledge about motion. Psychon. Bull. Rev. 8, 439–453 (2001).
Google Scholar
-
Ullman, T. D. & Tenenbaum, J. B. Bayesian models of conceptual development: learning as building models of the world. Annu. Rev. Dev. Psychol. 2, 533–558 (2020).
Google Scholar
-
Xu, K. et al. A Bayesian-symbolic approach to reasoning and learning in intuitive physics. In Advances in Neural Information Processing Systems 34, 2478–2490 (NeurIPS, 2021).
-
Wu, J. et al. Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In Advances in Neural Information Processing Systems 28, 127–135 (NeurIPS, 2015).
-
Chen, T. et al. ‘Just In Time’ representations for mental simulation in intuitive physics. Proc. Annu. Meet. Cogn. Sci. Soc. 45, 2484–2491 (2023).
-
Hartshorne, J. K. & Schachner, A. Tracking replicability as a method of postpublication open evaluation. Front. Comput. Neurosci. 6, 8 (2012).
Google Scholar
-
Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, 4716 (2015).
Google Scholar
-
Cohen, A. D. Test-taking strategies. Lang. Assess. Q. 3, 307–331 (2006).
Google Scholar
-
Xie, Q. Does test preparation work? Implications for score validity. Lang. Assess. Q. 10, 196–218 (2013).
Google Scholar
-
Stenlund, T., Eklöf, H. & Lyrén, P. E. Group differences in test-taking behaviour: an example from a high-stakes testing program. Assess. Educ. Princ. Policy Pract. 24, 4–20 (2017).
-
Stenlund, T., Lyrén, P. E. & Eklöf, H. The successful test taker: exploring test-taking behavior profiles through cluster analysis. Eur. J. Psychol. Educ. 33, 403–417 (2018).
Google Scholar
-
Zago, M. & Lacquaniti, F. Cognitive, perceptual and action-oriented representations of falling objects. Neuropsychologia 43, 178–188 (2005).
Google Scholar
-
Huber, S. & Krist, H. When is the ball going to hit the ground? Duration estimates, eye movements, and mental imagery of object motion. J. Exp. Psychol. Hum. Percept. Perform. 30, 431 (2004).
Google Scholar
-
Vicovaro, M., Noventa, S. & Battaglini, L. Intuitive physics of gravitational motion as shown by perceptual judgment and prediction-motion tasks. Acta Psychol. 194, 51–62 (2019).
Google Scholar
-
Friedman, W. J. Arrows of time in infancy: the representation of temporal-causal invariances. Cogn. Psychol. 44, 252–296 (2002).
Google Scholar
-
Masin, S. C., Crivellaro, F. & Varotto, D. The intuitive physics of the equilibrium of the lever and of the hydraulic pressures: implications for the teaching of elementary physics. Psicológica 35, 441–461 (2014).
-
Howard, I. P. & Rogers, B. in Stevens Handbook of Experimental Psychology: Sensation and Perception 3rd edn (eds Pashler, H. & Yantis, S.) 77–120 (Wiley, 2002).
-
Eichenbaum, H. Memory systems. WIREs Cogn. Sci. 1, 478–490 (2010).
Google Scholar
-
Frank, M. J., Cohen, M. X. & Sanfey, A. G. Multiple systems in decision making: a neurocomputational perspective. Curr. Dir. Psychol. Sci. 18, 73–77 (2009).
Google Scholar
-
Oved, I., Krishnaswamy, N., Pustejovsky, J. & Hartshorne, J. K. Neither neural networks nor the language-of-thought alone make a complete game. Behav. Brain Sci. 46, e1 (2023).
Google Scholar
-
Duan, J., Dasgupta, A., Fischer, J. & Tan, C. A survey on machine learning approaches for modelling intuitive physics. In Proc. 31st Int. Joint Conf. Artif. Intell. (IJCAI-22) 5444–5452 (2022).
-
McCoy, R. T., Yao, S., Friedman, D., Hardy, M. D. & Griffiths, T. L. Embers of autoregression show how large language models are shaped by the problem they are trained to solve. Proc. Natl Acad. Sci. USA 121, e2322420121 (2024).
Google Scholar
-
Marcus, G. F. The Algebraic Mind: Integrating Connectionism and Cognitive Science (MIT Press, 2003).
-
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).
Google Scholar
-
Goodman, N. D. & Frank, M. C. Pragmatic language interpretation as probabilistic inference. Trends Cogn. Sci. 20, 818–829 (2016).
Google Scholar
-
Griffiths, T. L. Manifesto for a new (computational) cognitive revolution. Cognition 135, 21–23 (2015).
Google Scholar
-
Kriegeskorte, N. & Douglas, P. K. Cognitive computational neuroscience. Nat. Neurosci. 21, 1148–1160 (2018).
Google Scholar
-
Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: a converging paradigm for intelligence in brains, minds, and machines. Science 349, 273–278 (2015).
Google Scholar
-
Bhui, R., Lai, L. & Gershman, S. J. Resource-rational decision making. Curr. Opin. Behav. Sci. 41, 15–21 (2021).
Google Scholar
-
Goodman, N. D., Tenenbaum, J. B. & ProbMods Contributors. Probabilistic Models of Cognition. https://probmods.org (2024).
-
Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).
Google Scholar
-
Ritchie, D., Horsfall, P. & Goodman, N.D. Deep amortized inference for probabilistic programs. Preprint at https://doi.org/10.48550/arXiv.1610.05735 (2016).
-
Christiansen, M. H. & Chater, N. The now-or-never bottleneck: a fundamental constraint on language. Behav. Brain Sci. 39, 62 (2016).
Google Scholar
-
O’Donnell, T. J. Productivity and Reuse in Language: A Theory of Linguistic Computation and Storage (MIT Press, 2015).
-
Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? optimal decisions from very few samples. Cogn. Sci. 38, 599–637 (2014).
Google Scholar
-
Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7, 217–229 (2015).
Google Scholar
-
Ellis, K. et al. Dreamcoder: bootstrapping inductive program synthesis with wake-sleep library learning. In Proc. 42nd ACM Sigplan International Conference on Programming Language Design and Implementation, 835–850 (ACM, 2021).
-
Allen, K. R. et al. Lifelong learning of cognitive styles for physical problem-solving: the effect of embodied experience. Psychon. Bull. Rev. 31, 1364–1375 (2024).
Google Scholar
-
Yen, W. M. & Fitzpatrick, A. R. in Educational Measurement 4th edn (ed. Brennan, R. L.) 111–153 (Praeger, 2006).
-
Mulaik, S. A. Foundations of Factor Analysis (CRC Press, 2009).
-
Passonneau, R. J. & Carpenter, B. The benefits of a model of annotation. Trans. Assoc. Comput. Linguist. 2, 311–326 (2014).
Google Scholar
-
Gershman, S. J. & Blei, D. M. A tutorial on Bayesian nonparametric models. J. Math. Psychol. 56, 1–12 (2012).
Google Scholar
-
Erb, C. D., Germine, L. & Hartshorne, J. K. Cognitive control across the lifespan: congruency effects reveal divergent developmental trajectories. J. Exp. Psychol. Gen. 152, 3285–3291 (2023).
Google Scholar
-
Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015).
Google Scholar
-
Hampshire, A., Highfield, R. R., Parkin, B. L. & Owen, A. M. Fractionating human intelligence. Neuron 76, 1225–1237 (2012).
Google Scholar
-
Ullman, M. T. in Theories in Second Language Acquisition 2nd edn (eds VanPatten, B. & Williams, J.) 128–161 (Routledge, 2020).
-
Dreher, J.-C. & Berman, K. F. Fractionating the neural substrate of cognitive control processes. Proc. Natl Acad. Sci. USA 99, 14595–14600 (2002).
Google Scholar
-
Aglinskas, A., Hartshorne, J. K. & Anzellotti, S. Contrastive machine learning reveals the structure of neuroanatomical variation within autism. Science 376, 1070–1074 (2022).
Google Scholar
-
Fischer, J. & Mahon, B. Z. What tool representation, intuitive physics, and action have in common: the brain’s first-person physics engine. Cogn. Neuropsychol. 38, 455–467 (2021).
Google Scholar
-
Pramod, R., Cohen, M. A., Tenenbaum, J. B. & Kanwisher, N. Invariant representation of physical stability in the human brain. eLife 11, e71736 (2022).
Google Scholar
-
Fischer, J., Mikhael, J. G., Tenenbaum, J. B. & Kanwisher, N. Functional neuroanatomy of intuitive physical inference. Proc. Natl Acad. Sci. USA 113, 5072–5081 (2016).
Google Scholar
-
Schwettmann, S., Tenenbaum, J. B. & Kanwisher, N. Invariant representations of mass in the human brain. eLife 8, e46619 (2019).
Google Scholar
-
Schwartenbeck, P. et al. Generative replay underlies compositional inference in the hippocampal–prefrontal circuit. Cell 186, 4885–4897 (2023).
Google Scholar
-
Hecht, H. & Bertamini, M. Understanding projectile acceleration. J. Exp. Psychol. Hum. Percept. Perform. 26, 730 (2000).
Google Scholar
-
Hecht, H. Regularities of the physical world and the absence of their internalization. Behav. Brain Sci. 24, 608–617 (2001).
Google Scholar
-
Hartshorne, J. K. et al. A thousand studies for the price of one: accelerating psychological science with pushkin. Behav. Res. Methods 51, 1782–1803 (2019).
Google Scholar
-
Fedorov, V. Optimal experimental design. WIREs Comput. Stat. 2, 581–589 (2010).
Google Scholar
-
Foster, A. et al. Variational Bayesian optimal experimental design. In Advances in Neural Information Processing Systems 32 (eds Wallach, H. et al.) 14036–14047 (NeurIPS, 2019).
-
Golan, T., Raju, P. C. & Kriegeskorte, N. Controversial stimuli: pitting neural networks against each other as models of human cognition. Proc. Natl Acad. Sci. USA 117, 29330–29337 (2020).
Google Scholar
-
Kuczmann, I. The structure of knowledge and students’ misconceptions in physics. In AIP Conf. Proc. 1916 (AIP, 2017).
-
Dan, N., Omori, T. & Tomiyasu, Y. Development of infants’ intuitions about support relations: sensitivity to stability. Dev. Sci. 3, 171–180 (2000).
Google Scholar
-
Needham, A. & Baillargeon, R. Intuitions about support in 4.5-month-old infants. Cognition 47, 121–148 (1993).
Google Scholar
-
Baillargeon, R. & Hanko-Summers, S. Is the top object adequately supported by the bottom object? Young infants’ understanding of support relations. Cognit. Dev. 5, 29–53 (1990).
Google Scholar
-
Baillargeon, R. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 181–204 (MIT Press, 1995).
Acknowledgements
The authors thank A. Eisenkraft, E. Bonawitz, D. Hammer, K. Smith and T. Ullman for commentary and feedback. Funding was provided by NSF No. 2238912 and No. 2033938 to J.K.H.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks Igor Bascandziev, Michele Vicovaro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Hartshorne, J.K., Jing, M. Insights into cognitive mechanics from education, developmental psychology and cognitive science.
Nat Rev Psychol (2025). https://doi.org/10.1038/s44159-025-00412-6
-
Accepted: 14 January 2025
-
Published: 28 February 2025
-
DOI: https://doi.org/10.1038/s44159-025-00412-6