Large-scale photonic computing with nonlinear disordered media


Abstract

Neural networks find widespread use in scientific and technological applications, yet their implementations in conventional computers have encountered bottlenecks due to ever-expanding computational needs. Photonic computing is a promising neuromorphic platform with potential advantages of massive parallelism, ultralow latency and reduced energy consumption but mostly for computing linear operations. Here we demonstrate a large-scale, high-performance nonlinear photonic neural system based on a disordered polycrystalline slab composed of lithium niobate nanocrystals. Mediated by random quasi-phase-matching and multiple scattering, linear and nonlinear optical speckle features are generated as the interplay between the simultaneous linear random scattering and the second-harmonic generation, defining a complex neural network in which the second-order nonlinearity acts as internal nonlinear activation functions. Benchmarked against linear random projection, such nonlinear mapping embedded with rich physical computational operations shows improved performance across a large collection of machine learning tasks in image classification, regression and graph classification. Demonstrating up to 27,648 input and 3,500 nonlinear output nodes, the combination of optical nonlinearity and random scattering serves as a scalable computing engine for diverse applications.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%;padding:30px 5px;display:flex;flex-direction:column;justify-content:space-between}.BuyBoxSection-683559780 p{margin:0}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 ul{margin:0}.BuyBoxSection-683559780 .link-usp{display:list-item;margin:0;margin-left:20px;padding-top:6px;list-style-position:inside}.BuyBoxSection-683559780 .link-usp span{font-size:14px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2737859108:hover{text-decoration:none}.BuyBoxSection-683559780 .btn-secondary{background:#fff}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1636778223{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2737859108{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:20px}.Button-505204839 .btn-secondary-label,.Button-1078489254 .btn-secondary-label,.Button-2737859108 .btn-secondary-label{color:#069}
/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical feature extraction and forward models.
Fig. 2: Speckle features for image classification.
Fig. 3: Speckle features for regression.
Fig. 4: Speckle features for graph classification.

Data availability

The raw datasets before optical processing are all publicly available. Specifically, the raw data for SLDs dataset is downloaded from ref. 47, ASL alphabet dataset is downloaded at https://www.kaggle.com/datasets/datamunge/sign-language-mnist, CIFAR-10 dataset is downloaded from ref. 53, yacht hydrodynamics dataset is downloaded from ref. 56, concrete compressive strength dataset is downloaded from ref. 57, graph dataset generated by the SBM is proposed by ref. 64, Reddit-binary graph dataset is downloaded from ref. 65, MNIST dataset is downloaded from ref. 49, FashionMNIST dataset is downloaded from ref. 50 and STL-10 dataset is downloaded from ref. 54. The recorded experimental speckle feature datasets are available at https://doi.org/10.5281/zenodo.10799862 and https://doi.org/10.5281/zenodo.8392103 (refs. 71,72). Source data for Figs. 2, 3 and 4 are provided with this paper.

Code availability

The code used to produce the results within this work is openly available at https://doi.org/10.5281/zenodo.10799862 (ref. 71).

References

  1. Wang, Y. E., Wei, G.-Y. & Brooks, D. Benchmarking TPU, GPU, and CPU platforms for deep learning. Preprint at arXiv https://doi.org/10.48550/arXiv.1907.10701 (2019).

  2. Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article 

    Google Scholar 

  3. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article 

    Google Scholar 

  4. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    Article 

    Google Scholar 

  5. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    Article 

    Google Scholar 

  6. Okumura, S. et al. Nonlinear decision-making with enzymatic neural networks. Nature 610, 496–501 (2022).

    Article 

    Google Scholar 

  7. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article 

    Google Scholar 

  8. Farhat, N. H., Psaltis, D., Prata, A. & Paek, E. Optical implementation of the Hopfield model. Appl. Opt. 24, 1469–1475 (1985).

    Article 

    Google Scholar 

  9. Weaver, C. & Goodman, J. W. A technique for optically convolving two functions. Appl. Opt. 5, 1248–1249 (1966).

    Article 

    Google Scholar 

  10. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    Article 

    Google Scholar 

  11. Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article 

    Google Scholar 

  12. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 

    Google Scholar 

  13. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 

    Google Scholar 

  14. Anderson, M. G., Ma, S.-Y., Wang, T., Wright, L. G. & McMahon, P. L. Optical transformers. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.10360 (2023).

  15. Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article 
    MathSciNet 

    Google Scholar 

  16. Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018).

    Article 

    Google Scholar 

  17. Miscuglio, M. et al. Massively parallel amplitude-only fourier neural network. Optica 7, 1812–1819 (2020).

    Article 

    Google Scholar 

  18. Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980–985 (2022).

    Article 

    Google Scholar 

  19. Saade, A. et al. in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing 6215–6219 (IEEE, 2016). https://doi.org/10.1109/ICASSP.2016.7472872

  20. Larger, L. et al. Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012).

    Article 

    Google Scholar 

  21. Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).

    Article 

    Google Scholar 

  22. Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

    Article 

    Google Scholar 

  23. Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).

    Google Scholar 

  24. Rafayelyan, M., Dong, J., Tan, Y., Krzakala, F. & Gigan, S. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X 10, 041037 (2020).

    Google Scholar 

  25. Pierangeli, D., Marcucci, G. & Conti, C. Photonic extreme learning machine by free-space optical propagation. Photonics Res. 9, 1446–1454 (2021).

    Article 

    Google Scholar 

  26. Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017).

    Article 

    Google Scholar 

  27. Spall, J., Guo, X. & Lvovsky, A. I. Hybrid training of optical neural networks. Optica 9, 803–811 (2022).

    Article 

    Google Scholar 

  28. Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

    Article 

    Google Scholar 

  29. Ryou, A. et al. Free-space optical neural network based on thermal atomic nonlinearity. Photonics Res. 9, B128–B134 (2021).

    Article 

    Google Scholar 

  30. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article 

    Google Scholar 

  31. Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).

    Article 

    Google Scholar 

  32. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article 

    Google Scholar 

  33. Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics 17, 408–415 (2023).

    Article 

    Google Scholar 

  34. Williamson, I. A. D. et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–12 (2020).

    Article 

    Google Scholar 

  35. Li, H.-Y. S., Qiao, Y. & Psaltis, D. Optical network for real-time face recognition. Appl. Opt. 32, 5026–5035 (1993).

    Article 

    Google Scholar 

  36. Wagner, K. & Psaltis, D. Multilayer optical learning networks. Appl. Opt. 26, 5061–5076 (1987).

    Article 

    Google Scholar 

  37. Marcucci, G., Pierangeli, D. & Conti, C. Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett. 125, 093901 (2020).

    Article 

    Google Scholar 

  38. Nakajima, M., Tanaka, K. & Hashimoto, T. Neural Schrödinger equation: physical law as deep neural network. IEEE Trans. Neural Netw. Learn. Syst. 33, 2686–2700 (2021).

    Article 

    Google Scholar 

  39. Zhou, T., Scalzo, F. & Jalali, B. Nonlinear Schrödinger kernel for hardware acceleration of machine learning. J. Light. Technol. 40, 1308–1319 (2022).

    Article 

    Google Scholar 

  40. Teğin, U., Yıldırım, M., Oğuz, İ., Moser, C. & Psaltis, D. Scalable optical learning operator. Nature Comp. Sci. 1, 542–549 (2021).

    Article 

    Google Scholar 

  41. Morandi, A., Savo, R., Müller, J. S., Reichen, S. & Grange, R. Multiple scattering and random quasi-phase-matching in disordered assemblies of LiNbO3 nanocubes. ACS Photonics 9, 1882–1888 (2022).

    Article 

    Google Scholar 

  42. Savo, R. et al. Broadband Mie driven random quasi-phase-matching. Nat. Photonics 14, 740–747 (2020).

    Article 

    Google Scholar 

  43. Moon, J., Cho, Y.- C., Kang, S., Jang, M. & Choi, W. Measuring the scattering tensor of a disordered nonlinear medium. Nat. Phys. 19, 1709–1718 (2023).

  44. Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 1, 530–537 (2019).

    Article 

    Google Scholar 

  45. Mounaix, M. et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116, 253901 (2016).

    Article 

    Google Scholar 

  46. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article 

    Google Scholar 

  47. Mavi, A. A new dataset and proposed convolutional neural network architecture for classification of American Sign Language digits. Preprint at arXiv https://doi.org/10.48550/arXiv.2011.08927 (2020).

  48. tecperson. Sign language MNIST. kaggle https://www.kaggle.com/datasets/datamunge/sign-language-mnist (2017).

  49. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar 

  50. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at arXiv https://doi.org/10.48550/arXiv.1708.07747 (2017).

  51. Oguz, I. et al. Programming nonlinear propagation for efficient optical learning machines. Adv. Photonics 6, 016002–016002 (2024).

    Article 

    Google Scholar 

  52. Momeni, A. & Fleury, R. Electromagnetic wave-based extreme deep learning with nonlinear time-floquet entanglement. Nat. Commun. 13, 2651 (2022).

    Article 

    Google Scholar 

  53. Krizhevsky, A. et al. Learning multiple layers of features from tiny images (2009).

  54. Coates, A., Ng, A. & Lee, H. in Proc. Fourteenth International Conference on Artificial Intelligence and Statistics 215–223 (JMLR Workshop and Conference Proc., 2011).

  55. Pierangeli, D., Rafayelyan, M., Conti, C. & Gigan, S. Scalable spin-glass optical simulator. Phys. Rev. Appl. 15, 034087 (2021).

    Article 

    Google Scholar 

  56. Gerritsma, J., Onnink, R. & Versluis, A. Yacht hydrodynamics. UCI Mach. Learn. Reposit. https://doi.org/10.24432/C5XG7R(2013).

  57. Yeh, I.- C. Concrete compressive strength. UCI Mach. Learn. Reposit. https://doi.org/10.24432/C5PK67 (2007).

  58. Yan, X. & Han, J. in Proc. 2002 IEEE International Conference on Data Mining, 2002 721–724 (IEEE, 2002). https://doi.org/10.1109/ICDM.2002.1184038

  59. Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. & Vandergheynst, P. Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34, 18–42 (2017).

    Article 

    Google Scholar 

  60. Yanardag, P. & Vishwanathan, S. in Proc. 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1365–1374 (2015). https://doi.org/10.1145/2783258.2783417

  61. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K. & Borgwardt, K. in Artificial Intelligence and Statistics 488–495 (PMLR, 2009).

  62. Yan, T. et al. All-optical graph representation learning using integrated diffractive photonic computing units. Sci. Adv. 8, eabn7630 (2022).

    Article 

    Google Scholar 

  63. Ghanem, H., Keriven, N. & Tremblay, N. in ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing 3575–3579 (IEEE, 2021). https://doi.org/10.1109/ICASSP39728.2021.9413614

  64. Lee, C. & Wilkinson, D. J. A review of stochastic block models and extensions for graph clustering. Appl. Netw. Sci. 4, 1–50 (2019).

    Article 

    Google Scholar 

  65. Kersting, K., Kriege, N. M., Morris, C., Mutzel, P. & Neumann, M. Benchmark data sets for graph kernels. TU Dortmund http://graphkernels.cs.tu-dortmund.de (2016).

  66. Müller, J. S., Morandi, A., Grange, R. & Savo, R. Modeling of random quasi-phase-matching in birefringent disordered media. Phys. Rev. Appl. 15, 064070 (2021).

    Article 

    Google Scholar 

  67. Ni, F., Liu, H., Zheng, Y. & Chen, X. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method. Adv. Photonics 5, 046010–046010 (2023).

    Article 

    Google Scholar 

  68. Hinton, G. The forward-forward algorithm: some preliminary investigations. Preprint at arXiv https://doi.org/10.48550/arXiv.2212.13345 (2022).

  69. Krastanov, S. et al. Room-temperature photonic logical qubits via second-order nonlinearities. Nat. Commun. 12, 191 (2021).

    Article 

    Google Scholar 

  70. Weis, R. S. & Gaylord, T. K. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

    Article 

    Google Scholar 

  71. Wang, H. Nonlinear optical computing with disordered media. Zenodo https://doi.org/10.5281/zenodo.10799862 (2024).

  72. Wang, H. Nonlinear optical computing with disordered media—experimental data for results in supplementary information. Zenodo https://doi.org/10.5281/zenodo.8392103 (2023).

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation projects LION, APIC (TMCG-2_213713) and grant 179099, ERC SMARTIES, European Union’s Horizon 2020 research and innovation program from the European Research Council under the Grant Agreement No. 714837 (Chi2-nanooxides), and Institut Universitaire de France. H.W. acknowledges support from China Scholarship Council. J.H. acknowledges Swiss National Science Foundation fellowship (P2ELP2_199825). R.S. acknowledges support from European Union—NextGenerationEU, project Comp-SECOONDO (MSCA_0000079).

Author information

Authors and Affiliations

Authors

Contributions

J.H. and S.G. conceived the project. H.W. and J.H. developed the experimental setup with the assistance of F.X. H.W. and J.H. performed the experiments and simulations and processed and analyzed the results. A.M., A.N., X.L., R.S. and R.G. fabricated and characterized the LN samples and provided insights of the physical model. H.W. and J.H. wrote the paper with input from all authors. S.G., R.G., Q.L. and J.H. supervised the project.

Corresponding authors

Correspondence to
Jianqi Hu or Sylvain Gigan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Xing Lin, Thomas van Vaerenbergh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–7 and Tables 1–7.

Peer Review File

Source data

Source Data Fig. 2

Source data for plots in Fig. 2b,c,d,f,g,h,j,k,l.

Source Data Fig. 3

Source data for plots in Fig. 3b,c,d,f,g,h,j,k,l.

Source Data Fig. 4

Source data for plots in Fig. 4d,e,g,h,i.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hu, J., Morandi, A. et al. Large-scale photonic computing with nonlinear disordered media.
Nat Comput Sci (2024). https://doi.org/10.1038/s43588-024-00644-1

Download citation

  • Received: 06 November 2023

  • Accepted: 14 May 2024

  • Published: 14 June 2024

  • DOI: https://doi.org/10.1038/s43588-024-00644-1


Leave a Reply

Your email address will not be published. Required fields are marked *