Simulation and assimilation of the digital human brain


Abstract

Here we present the Digital Brain (DB)—a platform for simulating spiking neuronal networks at the large neuron scale of the human brain on the basis of personalized magnetic resonance imaging data and biological constraints. The DB aims to reproduce both the resting state and certain aspects of the action of the human brain. An architecture with up to 86 billion neurons and 14,012 GPUs—including a two-level routing scheme between GPUs to accelerate spike transmission in up to 47.8 trillion neuronal synapses—was implemented as part of the simulations. We show that the DB can reproduce blood-oxygen-level-dependent signals of the resting state of the human brain with a high correlation coefficient, as well as interact with its perceptual input, as demonstrated in a visual task. These results indicate the feasibility of implementing a digital representation of the human brain, which can open the door to a broad range of potential applications.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */

/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */

Fig. 1: Schematic representation of the DB workflow and simulation performance.
Fig. 2: Digital Brain in the resting state and in action.

Data availability

The datasets and Source data that were used to establish and validate to the Digital Brain in this Brief Communication are publicly available34. All requests for further information of the datasets should be addressed to, and fulfilled by, our group: the DTB Consortium, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, via [email protected]. Source data are provided with this paper.

Code availability

Custom codes in Pytorch for PC and C++ for the HPC systems of our DB platform can be accessed via our GitHub profile (https://github.com/DTB-consortium/Digital_twin_brain-open) and Zenodo (https://doi.org/10.5281/zenodo.13995756)45. The code is also available as Supplementary Code to the manuscript. Note that our code strongly depends on the hardware and software conditions of our HPC system and may not run on other HPC systems. All requests for further information of code should be addressed to our group: the DTB Consortium, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, via [email protected].

References

  1. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).

    Article 

    Google Scholar 

  2. Amunts, K. & Lippert, T. Brain research challenges supercomputing. Science 374, 1054–1055 (2021).

    Article 

    Google Scholar 

  3. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article 

    Google Scholar 

  4. Hao, K. AI Pioneer Geoff Hinton: “Deep Learning is Going to be Able to Do Everything” (MIT Technology Review, 2020).

  5. Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project. Proc. IEEE 102, 652–665 (2014).

    Article 

    Google Scholar 

  6. Spreizer, S., Senk, J., Rotter, S., Diesmann, M. & Weyers, B. NEST desktop, an educational application for neuroscience. eNeuro https://doi.org/10.1523/ENEURO.0274-21.2021 (2021).

  7. Einevoll, G. T. et al. The scientific case for brain simulations. Neuron 102, 735–744 (2019).

    Article 

    Google Scholar 

  8. Sen-Bhattacharya, B. et al. Building a spiking neural network model of the basal ganglia on SpiNNaker. IEEE Trans. Cogn. Dev. Syst. 10, 823–836 (2018).

    Article 

    Google Scholar 

  9. Gambosi, B. et al. Dopamine-dependent cerebellar dysfunction enhances beta oscillations and disrupts motor learning in a multiarea model. Preprint at bioRxiv https://doi.org/10.1101/2023.07.18.549459 (2023).

  10. Pronold, J. et al. Multi-scale spiking network model of human cerebral cortex. Cereb. Cortex 34, bhae409 (2024).

    Article 

    Google Scholar 

  11. Sanz Leon, P. et al. The Virtual Brain: a simulator of primate brain network dynamics. Front. Neuroinform. 7, 10 (2013).

    Article 

    Google Scholar 

  12. Woodman, M. M. et al. Integrating neuroinformatics tools in The Virtual Brain. Front. Neuroinform. 8, 36 (2014).

    Article 

    Google Scholar 

  13. Du, X. et al. A low-latency communication design for brain simulations. IEEE Netw. 36, 8–15 (2022).

    Article 

    Google Scholar 

  14. Liu, Y. et al. Regularizing sparse and imbalanced communications for voxel-based brain simulations on supercomputers. In Proc. 51st International Conference on Parallel Processing (ed. Foyer, C.) 1–11 (ACM, 2022).

  15. D’Angelo, E. & Jirsa, V. The quest for multiscale brain modeling. Trends Neurosci. 45, 777–790 (2022).

    Article 

    Google Scholar 

  16. Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    Article 

    Google Scholar 

  17. Hansen, J. Y. et al. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat. Commun. 13, 4682 (2022).

    Article 

    Google Scholar 

  18. Finnema, S. J. et al. Imaging synaptic density in the living human brain. Sci. Transl. Med. 8, 348ra96 (2016).

    Article 

    Google Scholar 

  19. Friston, K. J., Mechelli, A., Turner, R. & Price, C. J. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477 (2000).

    Article 

    Google Scholar 

  20. Zhang, W., Chen, B., Feng, J. & Lu, W. On a framework of data assimilation for hyperparameter estimation of spiking neuronal networks. Neural Netw. 171, 293–307 (2024).

    Article 

    Google Scholar 

  21. Falchier, A., Clavagnier, S., Barone, P. & Kennedy, H. Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22, 5749–5759 (2002).

    Article 

    Google Scholar 

  22. Beaulieu, C. & Colonnier, M. A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J. Comp. Neurol. 231, 180–189 (1985).

    Article 

    Google Scholar 

  23. Etzel, J. A. et al. Reward motivation enhances task coding in frontoparietal cortex. Cereb. Cortex 26, 1647–1659 (2016).

    Article 

    Google Scholar 

  24. Statistical Parametric Mapping (UCL, 2024); http://www.fil.ion.ucl.ac.uk/spm

  25. Barlow, H. B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972).

    Article 

    Google Scholar 

  26. Lu, W. et al. Imitating and exploring the human brain’s resting and task-performing states via brain computing: scaling and architecture. Natl Sci. Rev. 11, nwae080 (2024).

    Article 

    Google Scholar 

  27. Modha, D. S. & Singh, R. Network architecture of the long-distance pathways in the macaque brain. Proc. Natl Acad. Sci. USA 107, 13485–13490 (2010).

    Article 

    Google Scholar 

  28. Zimmer, C. 100 trillion connections. Sci. Am. 304, 58–63 (2011).

    Article 

    Google Scholar 

  29. van Albada, S. et al. Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlations. PLoS Comput. Biol. 11, e1004490 (2015).

    Article 

    Google Scholar 

  30. Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., & Kötter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10302–10307 (2009).

    Article 

    Google Scholar 

  31. Fourcaud, N. & Brunel, N. Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput. 14, 2057–2110 (2002).

    Article 

    Google Scholar 

  32. Levina, A., Herrmann, J. M. & Geisel, T. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 3, 857–860 (2007).

    Article 

    Google Scholar 

  33. Gandolfi, D. et al. Full-scale scaffold model of the human hippocampus CA1 area. Nat. Comput. Sci. 3, 264–276 (2023).

    Article 

    Google Scholar 

  34. Lu, W., Feng, J., Xiang, S. & Wang, J. Source data and dataset for the digital brain project. figshare https://doi.org/10.6084/m9.figshare.27310665 (2024).

  35. Tournier, J.-D. et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019).

    Article 

    Google Scholar 

  36. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article 

    Google Scholar 

  37. Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112, 267–277 (2015).

    Article 

    Google Scholar 

  38. Burkitt, A. N. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol. Cybern. 95, 97–112 (2006).

    Article 
    MathSciNet 

    Google Scholar 

  39. Barker, B. Message Passing Interface (MPI) Workshop: High Performance Computing on Stampede Vol. 262 (Cornell Univ., 2015).

  40. Du, X. et al. HRCM: a hierarchical regularizing mechanism for sparse and imbalanced communication inwhole human brain simulations. IEEE Trans. Parallel Distrib. Syst. 35, 1056–1073 (2024).

    Article 

    Google Scholar 

  41. Ananthanarayanan, R. & Modha, D. S. Anatomy of a cortical simulator. In Proc. 2007 ACM/IEEE Conference on Supercomputing (ed. Brown, J.) 1–12 (ACM, 2007).

  42. Ananthanarayanan, R. & Modha, D. S. Scaling, stability and synchronization in mouse-sized (and larger) cortical simulations. BMC Neurosci. 8, P187 (2007).

    Article 

    Google Scholar 

  43. Ananthanarayanan, R., Esser, S. K., Simon, H. D. & Modha, D. S. Proc. Conference on High Performance Computing Networking, Storage and Analysis (IEEE, 2009).

  44. Helias, M. et al. Supercomputers ready for use as discovery machines for neuroscience. Front. Neuroinform. 6, 26 (2012).

    Article 

    Google Scholar 

  45. DTB-consortium. Digital_twin_brain-open. Zenodo https://doi.org/10.5281/zenodo.13995756 (2024).

  46. Frye, J., Ananthanarayanan, R. & Modha, D. S. Towards real-time, mouse-scale cortical simulations. Poster at CoSyNe: Computational and Systems Neuroscience https://dominoweb.draco.res.ibm.com/reports/rj10404.pdf (IBM, 2007).

  47. Igarashi, J., Yamaura, H. & Yamazaki, T. Large-scale simulation of a layered cortical sheet of spiking network model using a tile partitioning method. Front. Neuroinform. 13, 71 (2019).

    Article 

    Google Scholar 

  48. Djurfeldt, M. et al. Massively Parallel Simulation of Brain-Scale Neuronal Network Models Technical Report, TRITA-NA-P0513, CBN (KTH, 2005).

  49. Preissl, R. et al. Proc. International Conference on High Performance Computing, Networking, Storage and Analysis (IEEE, 2012).

Download references

Acknowledgements

We thank T. W. Robbins, E. Rolls, K. Friston and D. Waxman for their helpful comments on the paper. The simulation was supported by Advanced Computing East China Sub-Centre. This work received support from the following sources: STI2030-Major Projects 2021ZD0200204, Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX01), Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Technology, the 111 Project (grant no. B18015) and the National Natural Science Foundation of China (grant no. 62072111).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

W.L., Q.Z. and J.F. conceptualized the study. W.L., Q.Z. and J.F. designed the analytic approach. W.L., S.X., L.Z., J.W., X.D. and the DTB Consortium completed the investigation. S.X., L.Z. and the DTB Consortium helped with the visualization. N.X. and J.F. acquired funding. Q.Z. and J.F. assisted with project administration. W.L., S.X., L.Z., J.W. and the DTB Consortium wrote the paper. W.L., S.X., L.Z., J.W., X.D. and J.F. revised the first draft. All authors critically revised the paper.

Corresponding author

Correspondence to
Jianfeng Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks James Aimone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Fernando Chirigati, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Preciseness of Simulation of the Euler–Maruyama method.

The comparison of the membrane potentials in a LIF neuronal network of 1000 neurons by the Euler–Maruyama method with time-step 1 msec (blue plot) and 0.001 msec (purple plot).

Source data

Extended Data Fig. 2 Digital brain (DB) in action (visual evaluation task).

The distributions of Pearson correlations between the empirical and assimilated BOLD signals at voxel-level in different brain parts were evaluated in the left panel. The box represents the interquartile range (IQR) from the 25th to the 75th percentile, with the median indicated by a line within the box. Whiskers extend to the minimum and maximum values, excluding outliers, providing a comprehensive overview of the data distribution. In the right panel, region-level correlations showed a positive association with the strength of structural connections (obtained from DWI) between the corresponding brain region to the input region (Pearson r = 0.678, p = 3.8e-11, df=120). Tests were two-sided, with no multiple comparison adjustments, yielding an effect size of 0.678, and a 95% CI of [0.624, 0.725] (right panel).

Source data

Extended Data Fig. 3 Framework of Hierarchical Bayesian Inference.

The hyperparameter layer presents the random walk to updating of the hyperparameter from (lambda (t)) to ({lambda }^{{prime} }). The parameter layer presents the sampling process of the parameter vector (theta (t)) from the hyperparameter by the sampling operator (Phi (bullet )) and being modified via the changes from (lambda (t)) to ({lambda }^{{prime} }), which gives (theta (t+1)). The computational model layer shows the evolution of the hidden state (x(t)) by iteratively computing the computational model (dot{x}=F(x,theta )), which influenced by the parameter vector (theta (t)). The experimental layer shows how the observation (y(t+1)), which is obtained from the hidden state (x(t+1)), is used to update the hidden state and the parameters, and in particular, to resample the hyperparameters from ({lambda }^{{prime} }) to (lambda (t+1)).

Extended Data Table 1 Statistical Information of the brain network
Full size table
Extended Data Table 2 The summary of the Digital Brain model
Full size table
Extended Data Table 3 Average number of synapses received by individual neurons in each cortical layer
Full size table
Extended Data Table 4 Details of the Balloon–Windkessel model
Full size table

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Figs. 1–8, Tables 1–5 and Algorithms 1–3.

Reporting Summary

Peer Review File

Supplementary Code

Custom code for the simulation and assimilation of the Digital Brain, also available at https://doi.org/10.5281/zenodo.13995756.

Source data

Source Data Extended Data Fig. 1

The numerical source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

The numerical source data for Extended Data Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Du, X., Wang, J. et al. Simulation and assimilation of the digital human brain.
Nat Comput Sci (2024). https://doi.org/10.1038/s43588-024-00731-3

Download citation

  • Received: 24 April 2024

  • Accepted: 30 October 2024

  • Published: 19 December 2024

  • DOI: https://doi.org/10.1038/s43588-024-00731-3


Leave a Reply

Your email address will not be published. Required fields are marked *