Abstract
Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.
This is a preview of subscription content, access via your institution
Access options
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
-
Jackson, R. B. & Jobbágy, E. G. From icy roads to salty streams. Proc. Natl Acad. Sci. USA 102, 14487–14488 (2005).
Google Scholar
-
Anning, D. W. & Flynn, M. E. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States (USGS, 2014).
-
Dugan, H. A. & Arnott, S. E. The ecosystem implications of road salt as a pollutant of freshwaters. Wiley Interdiscip. Rev. Water 10, e1629 (2022).
Google Scholar
-
Cañedo-Argüelles, M. et al. Effects of potash mining on river ecosystems: an experimental study. Environ. Pollut. 224, 759–770 (2017).
Google Scholar
-
US Geological Survey. How large is a lifetime supply of minerals for the average person? USGS https://www.usgs.gov/faqs/how-large-a-lifetime-supply-minerals-average-person (2023).
-
Grant, S. B. et al. Can common pool resource theory catalyze stakeholder-driven solutions to the freshwater salinization syndrome? Environ. Sci. Technol. 56, 13517–13527 (2022).
Google Scholar
-
Kaushal, S. S. et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. 8, 190–211 (2023).
Google Scholar
-
Kaushal, S. S. et al. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154, 255–292 (2021).
Google Scholar
-
Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).
Google Scholar
-
Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Phil. Trans. R. Soc. B 374, 20180017 (2019).
Google Scholar
-
Kaushal, S. S. et al. Making ‘chemical cocktails’ — evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. 119, 104632 (2020).
Google Scholar
-
Bhide, S. V. et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat. Sustain. 4, 699–707 (2021).
Google Scholar
-
DeVilbiss, S. E., Steele, M. K., Krometis, L.-A. H. & Badgley, B. D. Freshwater salinization increases survival of Escherichia coli and risk of bacterial impairment. Water Res. 191, 116812 (2021).
Google Scholar
-
Johnsen, H. K., Rueslatten, H. G. & Hovland, M. T. The ‘global salt cycle’: formation of giant salt accumulations, a result of subduction, mantle upwelling, and rifting. Preprint at https://doi.org/10.20944/preprints202107.0377.v1 (2021).
-
Kostick, D. S. Material flow of salt (USGS, 1993).
-
Meybeck, M. in Treatise on Geochemistry Vol. 5 (eds Holland, H. D. & Turekian, K. K.) 207–223 (Elsevier, 2003).
-
Anderson, N. L. & Knapp, R. An overview of some of the large scale mechanisms of salt dissolution in western Canada. Geophysics 58, 1375–1387 (1993).
Google Scholar
-
Anderson, R. Y. & Kirkland, D. W. Dissolution of salt deposits by brine density flow. Geology 8, 66 (1980).
Google Scholar
-
Jenyon, M. K. Seismic expression of salt dissolution-related features in the North Sea. Bull. Can. Pet. Geol. 36, 274–283 (1988).
-
Anderson, R. Y. Deep-seated salt dissolution in the Delaware Basin, Texas, and New Mexico. New Mexico Geol. Soc. 10, 133–145 (1981).
-
Cooper, A. H. in Geological Hazards in the UK: Their Occurrence, Monitoring and Mitigation Ch. 14 (eds Giles, D. P. & Griffiths, J. S.) (Geological Society of London, 2020).
-
Smith, J. E. & Santamarina, J. C. Red sea evaporites: formation, creep and dissolution. Earth Sci. Rev. 232, 104115 (2022).
Google Scholar
-
Hudec, M. R. & Jackson, M. P. A. Terra infirma: understanding salt tectonics. Earth Sci. Rev. 82, 1–28 (2007).
Google Scholar
-
Hopmans, J. W. et al. in Advances in Agronomy Vol. 169 Ch. 1 (ed. Sparks, D. L.) 1–191 (Academic, 2021).
-
Daliakopoulos, I. N. et al. The threat of soil salinity: a European scale review. Sci. Total Environ. 573, 727–739 (2016).
Google Scholar
-
White, P. J. & Broadley, M. R. Chloride in soils and its uptake and movement within the plant: a review. Ann. Bot. 88, 967–988 (2001).
Google Scholar
-
Ali, S. et al. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Env. Sci. Pollut. Res. 24, 12700–12712 (2017).
Google Scholar
-
Taylor, L. L. et al. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7, 171–191 (2009).
Google Scholar
-
Likens, G. E. et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89–173 (1998).
Google Scholar
-
Leri, A. C. & Myneni, S. C. B. Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Glob. Biogeochem. Cycles 24, GB4021 (2010).
Google Scholar
-
Sverdrup, H. Chemical weathering of soil minerals and the role of biological processes. Fungal Biol. Rev. 23, 94–100 (2009).
Google Scholar
-
Tripler, C. E., Kaushal, S. S., Likens, G. E. & Todd Walter, M. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).
Google Scholar
-
Elmore, A. J., Kaste, J. M., Okin, G. S. & Fantle, M. S. Groundwater influences on atmospheric dust generation in deserts. J. Arid Environ. 72, 1753–1765 (2008).
Google Scholar
-
Li, X., Chang, S. X. & Salifu, K. F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ. Rev. 22, 41–50 (2014).
Google Scholar
-
Schlesinger, W. H. The formation of caliche in soils of the Mojave Desert, California. Geochim. Cosmochim. Acta 49, 57–66 (1985).
Google Scholar
-
Stallard, R. F. Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu. Rev. Earth Planet. Sci. 23, 11–39 (1995).
Google Scholar
-
Shields, G. A. & Mills, B. J. W. Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology 49, 299–303 (2020).
Google Scholar
-
Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).
Google Scholar
-
Vodyanitskii, Yu. N. & Makarov, M. I. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: a review. Eurasian Soil Sci. 50, 1025–1032 (2017).
Google Scholar
-
Kaushal, S. S. et al. Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends. Front. Environ. Sci. 11, 1122485 (2023).
Google Scholar
-
Domenico, P. A. & Robbins, G. A. The displacement of connate water from aquifers. Geol. Soc. Am. Bull. 96, 328–335 (1985).
Google Scholar
-
Yager, R. M., McCoy, K. J., Voss, C. I., Sanford, W. E. & Winston, R. B. The role of uplift and erosion in the persistence of saline groundwater in the shallow subsurface. Geophys. Res. Lett. 44, 3672–3681 (2017).
Google Scholar
-
Younger, P. L., Boyce, A. J. & Waring, A. J. Chloride waters of Great Britain revisited: from subsea formation waters to onshore geothermal fluids. Proc. Geol. Assoc. 126, 453–465 (2015).
Google Scholar
-
Stotler, R. L., Frape, S. K., Ruskeeniemi, T., Pitkänen, P. & Blowes, D. W. The interglacial–glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters. Geochim. Cosmochim. Acta 76, 45–67 (2012).
Google Scholar
-
Li, C., Gao, X., Li, S. & Bundschuh, J. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Env. Sci. Pollut. Res. 27, 41157–41174 (2020).
Google Scholar
-
Tosaki, Y. et al. Deep incursion of seawater into the Hiroshima Granites during the Holocene transgression: evidence from 36Cl age of saline groundwater in the Hiroshima area, Japan. Geochem. J. 51, 263–275 (2017).
Google Scholar
-
Manca, F., Capelli, G. & Tuccimei, P. Sea salt aerosol groundwater salinization in the Litorale Romano Natural Reserve (Rome, Central Italy). Env. Earth Sci. 73, 4179–4190 (2015).
Google Scholar
-
Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).
Google Scholar
-
Mackenzie, F. T. & Kump, L. R. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270, 586–586 (1995).
Google Scholar
-
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).
Google Scholar
-
Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).
Google Scholar
-
Briggs, L. I. Evaporite facies. J. Sediment. Res. 28, 46–56 (1958).
-
Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 2: application of a new salt-forming model on selected cases. Mar. Pet. Geol. 92, 128–148 (2018).
Google Scholar
-
Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 1: towards a new understanding. Mar. Pet. Geol. 92, 987–1009 (2018).
Google Scholar
-
Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).
Google Scholar
-
Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).
Google Scholar
-
Kohfeld, K. E. & Harrison, S. P. DIRTMAP: the geological record of dust. Earth Sci. Rev. 54, 81–114 (2001).
Google Scholar
-
Lawrence, C. R. & Neff, J. C. The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem. Geol. 267, 46–63 (2009).
Google Scholar
-
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002).
Google Scholar
-
Feger, K. H. in Magnesium Deficiency in Forest Ecosystems (eds Hüttl, R. F. & Schaaf, W.) 67–99 (Springer, 1997).
-
Middleton, N. J. Desert dust hazards: a global review. Aeolian Res. 24, 53–63 (2017).
Google Scholar
-
Skiles, S. M. et al. Implications of a shrinking Great Salt Lake for dust on snow deposition in the Wasatch Mountains, UT, as informed by a source to sink case study from the 13–14 April 2017 dust event. Environ. Res. Lett. 13, 124031 (2018).
Google Scholar
-
Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys. 45, RG1002 (2007).
Google Scholar
-
Tjandraatmadja, G., Pollard, C., Sheedy, C. & Gozukra, Y. Sources of contaminants in domestic wastewater: nutrients and additional elements from household products (CSIRO, 2010).
-
Diaper, C. et al. Sources of critical contaminants in domestic wastewater: contaminant loads from household appliances (CSIRO, 2008).
-
US Geological Survey. Minerals Yearbook, Volume 1: Metals and Minerals (USGS, 2023).
-
Kaushal, S. S. et al. Freshwater salinization syndrome alters retention and release of chemical cocktails along flowpaths: from stormwater management to urban streams. Freshw. Sci. 41, 420–441 (2022).
Google Scholar
-
Kaushal, S. S. et al. Increased river alkalinization in the Eastern U.S. Environ. Sci. Technol. 47, 10302–10311 (2013).
-
Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).
Google Scholar
-
Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).
Google Scholar
-
Drake, T. W. et al. Increasing alkalinity export from large Russian arctic rivers. Environ. Sci. Technol. 52, 8302–8308 (2018).
Google Scholar
-
Gomez, F. A., Wanninkhof, R., Barbero, L. & Lee, S.-K. Increasing river alkalinity slows ocean acidification in the Northern Gulf of Mexico. Geophys. Res. Lett. 48, e2021GL096521 (2021).
Google Scholar
-
Cai, W.-J. et al. A comparative overview of weathering intensity and HCO3− flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont. Shelf Res. 28, 1538–1549 (2008).
Google Scholar
-
Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).
Google Scholar
-
Kaushal, S. S. et al. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl. Geochem. 83, 121–135 (2017).
Google Scholar
-
Ross, M. R. V., Nippgen, F., Hassett, B. A., McGlynn, B. L. & Bernhardt, E. S. Pyrite oxidation drives exceptionally high weathering rates and geologic CO2 release in mountaintop-mined landscapes. Glob. Biogeochem. Cycles 32, 1182–1194 (2018).
Google Scholar
-
Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603–604, 94–108 (2017).
Google Scholar
-
Bester, M. L., Frind, E. O., Molson, J. W. & Rudolph, D. L. Numerical investigation of road salt impact on an urban wellfield. Groundwater 44, 165–175 (2006).
Google Scholar
-
Stets, E. G., Kelly, V. J. & Crawford, C. G. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. Sci. Total Environ. 488–489, 280–289 (2014).
Google Scholar
-
Raymond, P. A., Oh, N.-H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi river. Nature 451, 449–452 (2008).
Google Scholar
-
Yusta-García, R., Orta-Martínez, M., Mayor, P., González-Crespo, C. & Rosell-Melé, A. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers. Environ. Pollut. 225, 370–380 (2017).
Google Scholar
-
Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H. & Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334–8348 (2014).
Google Scholar
-
Badaruddin, S., Werner, A. D. & Morgan, L. K. Water table salinization due to seawater intrusion. Water Resour. Res. 51, 8397–8408 (2015).
Google Scholar
-
Baraza, T. & Hasenmueller, E. A. Road salt retention and transport through vadose zone soils to shallow groundwater. Sci. Total Environ. 755, 142240 (2021).
Google Scholar
-
Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).
Google Scholar
-
Cao, T., Han, D. & Song, X. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. 603, 126844 (2021).
Google Scholar
-
Jasechko, S., Perrone, D., Seybold, H., Fan, Y. & Kirchner, J. W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 11, 3229 (2020).
Google Scholar
-
Panthi, J., Pradhanang, S. M., Nolte, A. & Boving, T. B. Saltwater intrusion into coastal aquifers in the contiguous United States — a systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 836, 155641 (2022).
Google Scholar
-
Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209 (2018).
Google Scholar
-
US Food and Drug Administration. Sodium in your diet: use the nutrition facts label and reduce your intake (FDA, 2022).
-
Tjandraatmadja, G., Pollard, C., Gozukara, Y. & Sheedy, C. Origins of priority contaminants in household wastewater — an experimental assessment (CSIRO, 2009).
-
van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Datasets of the phosphorus content in laundry and dishwasher detergents. Data Brief 21, 2284–2289 (2018).
Google Scholar
-
Ivushkin, K. et al. Global mapping of soil salinity change. Remote Sens. Environ. 231, 111260 (2019).
Google Scholar
-
Food and Agriculture Organization of the United Nations. Saline soils and their management. FAO https://www.fao.org/3/x5871e/x5871e04.htm (2016).
-
Mahajan, S. & Tuteja, N. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444, 139–158 (2005).
Google Scholar
-
Litalien, A. & Zeeb, B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698, 134235 (2020).
Google Scholar
-
Jeppesen, E., Beklioğlu, M., Özkan, K. & Akyürek, Z. Salinization increase due to climate change will have substantial negative effects on inland waters: a call for multifaceted research at the local and global scale. Innovation 1, 100030 (2020).
-
Letolle, R., Aladin, N., Filipov, I. & Boroffka, N. G. O. The future chemical evolution of the Aral Sea from 2000 to the years 2050. Mitig. Adapt. Strateg. Glob. Change 10, 51–70 (2005).
Google Scholar
-
Darst, B. C. Development of the potash fertilizer industry. Fertil. Res. 28, 103–107 (1991).
Google Scholar
-
David, M. B., Mitchell, C. A., Gentry, L. E. & Salemme, R. K. Chloride sources and losses in two tile-drained agricultural watersheds. J. Environ. Qual. 45, 341–348 (2016).
Google Scholar
-
Drew, L. J., Langer, W. H. & Sachs, J. S. Environmentalism and natural aggregate mining. Nat. Resour. Res. 11, 19–28 (2002).
Google Scholar
-
Winkler, E. M. Weathering and weathering rates of natural stone. Environ. Geol. Water Sci. 9, 85–92 (1987).
Google Scholar
-
Abuduwaili, J., Liu, D. & Wu, G. Saline dust storms and their ecological impacts in arid regions: saline dust storms and their ecological impacts in arid regions. J. Arid Land 2, 144–150 (2010).
Google Scholar
-
Gholampour, A. et al. Characterization of saline dust emission resulted from Urmia Lake drying. J. Env. Health Sci. Eng. 13, 82 (2015).
Google Scholar
-
Neff, J. C. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 1, 189–195 (2008).
Google Scholar
-
Goudie, A. S. & Middleton, N. J. The changing frequency of dust storms through time. Clim. Change 20, 197–225 (1992).
Google Scholar
-
Kolesar, K. R. et al. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application. Atmos. Environ. 177, 195–202 (2018).
Google Scholar
-
McNamara, S. M. et al. Observation of road salt aerosol driving inland wintertime atmospheric chlorine chemistry. ACS Cent. Sci. 6, 684–694 (2020).
Google Scholar
-
Kakavas, S. & Pandis, S. N. Effects of urban dust emissions on fine and coarse PM levels and composition. Atmos. Environ. 246, 118006 (2021).
Google Scholar
-
Parisi, A., Monno, V. & Fidelibus, M. D. Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. Int. J. Disaster Risk Reduct. 30, 292–305 (2018).
Google Scholar
-
Hintz, W. D. et al. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. Ecol. Appl. 27, 833–844 (2017).
Google Scholar
-
Hintz, W. D., Jones, D. K. & Relyea, R. A. Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects. Phil. Trans. R. Soc. B 374, 20180012 (2019).
Google Scholar
-
Moffett, E. R., Baker, H. K., Bonadonna, C. C., Shurin, J. B. & Symons, C. C. Cascading effects of freshwater salinization on plankton communities in the Sierra Nevada. Limnol. Oceanogr. Lett. 8, 30–37 (2023).
Google Scholar
-
Latham, J. & Smith, M. H. Effect on global warming of wind-dependent aerosol generation at the ocean surface. Nature 347, 372–373 (1990).
Google Scholar
-
Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72 (2007).
Google Scholar
-
Vengosh, A. Salinization and saline environments. Treatise Geochem. 9, 35 (2003).
-
Pereira, C. S., Lopes, I., Abrantes, I., Sousa, J. P. & Chelinho, S. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Phil. Trans. R. Soc. B 374, 20180251 (2019).
Google Scholar
-
Hintz, W. D. et al. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl Acad. Sci. USA 119, e2115033119 (2022).
Google Scholar
-
Cunillera-Montcusí, D. et al. Freshwater salinisation: a research agenda for a saltier world. Trends Ecol. Evol. 37, 440–453 (2022).
Google Scholar
-
Cañedo-Argüelles, M. et al. Salinisation of rivers: an urgent ecological issue. Environ. Pollut. 173, 157–167 (2013).
Google Scholar
-
Kinsman‐Costello, L. et al. Mud in the city: effects of freshwater salinization on inland urban wetland nitrogen and phosphorus availability and export. Limnol. Oceanogr. Lett. 8, 112–130 (2023).
Google Scholar
-
Kaushal, S. S. Increased salinization decreases safe drinking water. Environ. Sci. Technol. 50, 2765–2766 (2016).
Google Scholar
-
Jardine, A., Speldewinde, P., Carver, S. & Weinstein, P. Dryland salinity and ecosystem distress syndrome: human health implications. Ecohealth 4, 10–17 (2007).
Google Scholar
-
Shammi, M., Rahman, Md. M., Bondad, S. & Bodrud-Doza, Md. Impacts of salinity intrusion in community health: a review of experiences on drinking water sodium from coastal areas of Bangladesh. Healthcare 7, 50 (2019).
Google Scholar
-
Khan, A. E. et al. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study. PLoS ONE 9, e108715 (2014).
Google Scholar
-
Small, I., van der Meer, J. & Upshur, R. E. Acting on an environmental health disaster: the case of the Aral Sea. Environ. Health Perspect. 109, 547–549 (2001).
Google Scholar
-
Jones, B. A. & Fleck, J. Shrinking lakes, air pollution, and human health: evidence from California’s Salton Sea. Sci. Total Environ. 712, 136490 (2020).
Google Scholar
-
Ghale, Y. A. G., Tayanc, M. & Unal, A. Dried bottom of Urmia Lake as a new source of dust in the northwestern Iran: understanding the impacts on local and regional air quality. Atmos. Environ. 262, 118635 (2021).
Google Scholar
-
Lazur, A., VanDerwerker, T. & Koepenick, K. Review of implications of road salt use on groundwater quality — corrosivity and mobilization of heavy metals and radionuclides. Water Air Soil Pollut. 231, 474 (2020).
Google Scholar
-
McNaboe, L. A., Robbins, G. A. & Dietz, M. E. Mobilization of radium and radon by deicing salt contamination of groundwater. Water Air Soil Pollut. 228, 94 (2017).
Google Scholar
-
Vinson, D. S. et al. Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). Appl. Geochem. 38, 161–175 (2013).
Google Scholar
-
Tamamura, S. et al. Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite. J. Radioanal. Nucl. Chem. 299, 569–575 (2014).
Google Scholar
-
Edwards, M. & Triantafyllidou, S. Chloride‐to‐sulfate mass ratio and lead leaching to water. J. Am. Water Work. Assoc. 99, 96–109 (2007).
Google Scholar
-
Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272, 244–246 (1996).
Google Scholar
-
Bai, J. et al. Nitrification potential of marsh soils from two natural saline–alkaline wetlands. Biol. Fertil. Soils 46, 525–529 (2010).
Google Scholar
-
Duan, S. & Kaushal, S. S. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences 12, 7331–7347 (2015).
Google Scholar
-
Van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).
Google Scholar
-
Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
Google Scholar
-
Weinberger, R., Lyakhovsky, V., Baer, G. & Begin, Z. B. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: implications for effective viscosity of rock salt. Geochem. Geophys. Geosyst. 7, Q05014 (2006).
Google Scholar
-
Bruthans, J. et al. Holocene marine terraces on two salt diapirs in the Persian Gulf, Iran: age, depositional history and uplift rates. J. Quat. Sci. 21, 843–857 (2006).
Google Scholar
-
Weinberg, R. F. The upward transport of inclusions in Newtonian and power-law salt diapirs. Tectonophysics 228, 141–150 (1993).
Google Scholar
-
Wilkinson, B. H., McElroy, B. J., Kesler, S. E., Peters, S. E. & Rothman, E. D. Global geologic maps are tectonic speedometers — rates of rock cycling from area-age frequencies. Geol. Soc. Am. Bull. 121, 760–779 (2009).
Google Scholar
-
Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).
Google Scholar
-
Wu, C., Lin, Z. & Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 20, 10401–10425 (2020).
Google Scholar
-
Grythe, H., Ström, J., Krejci, R., Quinn, P. & Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 14, 1277–1297 (2014).
Google Scholar
-
National Atmospheric Deposition Program. National trends network gradient map. NADP https://nadp.slh.wisc.edu/maps-data/ntn-gradient-maps (2021).
-
Likens, G. E. Biogeochemistry of a Forested Ecosystem 3rd edn (Springer, 2013).
-
Schlesinger, W. H. Community structure, dynamics and nutrient cycling in the Okefenokee Cypress swamp-forest. Ecol. Monogr. 48, 43–65 (1978).
Google Scholar
-
Lucas, Y. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu. Rev. Earth Planet. Sci. 13, 135–163 (2001).
Google Scholar
-
van der Heijden, G. et al. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: results from an isotopic labeling study in a beech forest on base-poor soil. Biogeochemistry 122, 375–393 (2015).
Google Scholar
-
Rose, D. A., Konukcu, F. & Gowing, J. W. Effect of watertable depth on evaporation and salt accumulation from saline groundwater. Soil Res. 43, 565 (2005).
Google Scholar
-
Gran, M. et al. Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil. J. Hydrol. 396, 215–220 (2011).
Google Scholar
-
Yu, L. A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. 116, C10025 (2011).
Google Scholar
-
Qu, T., Gao, S. & Fukumori, I. What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett. 38, L07602 (2011).
Google Scholar
-
Milliman, J. D. & Droxler, A. W. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol. Rundsch. 85, 496–504 (1996).
Google Scholar
-
Krissansen-Totton, J. & Catling, D. C. A coupled carbon-silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate. Earth Planet. Sci. Lett. 537, 116181 (2020).
Google Scholar
-
Von Damm, K. L. et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).
Google Scholar
-
Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).
Google Scholar
-
Lake, R. A. & Lewis, E. L. Salt rejection by sea ice during growth. J. Geophys. Res. 75, 583–597 (1970).
Google Scholar
-
Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res. 99, 12319–12341 (1994).
Google Scholar
-
Worster, M. G. & Rees Jones, D. W. Sea-ice thermodynamics and brine drainage. Phil. Trans. R. Soc. A 373, 20140166 (2015).
Google Scholar
-
Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. Brine fluxes from growing sea ice. Geophys. Res. Lett. 38, L04501 (2011).
Google Scholar
-
Wakatsuchi, M. & Ono, N. Measurements of salinity and volume of brine excluded from growing sea ice. J. Geophys. Res. 88, 2943–2951 (1983).
Google Scholar
-
Gherardi, J.-M. et al. Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth Planet. Sci. Lett. 240, 710–723 (2005).
Google Scholar
-
Bresler, E. Transport of salts in soils and subsoils. Agric. Water Manag. 4, 35–62 (1981).
Google Scholar
-
Wagenet, R. J. in Chemical Mobility and Reactivity in Soil Systems Ch. 9 (eds Nelson, D. W., Elrick, D. E. & Tanji, K. K.) 123–140 (Wiley, 1983).
-
Howe, J. A. & Smith, A. P. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J. et al.) 23–55 (Elsevier, 2021).
-
Danielsen, S. W. & Kuznetsova, E. in Engineering Geology for Society and Territory Vol. 5 (eds Lollino, G. et al.) 41–44 (Springer, 2015).
-
Fookes, P. G., Gourley, C. S. & Ohikere, C. Rock weathering in engineering time. Q. J. Eng. Geol. 21, 33–57 (1988).
Google Scholar
-
Kaonga, C. C., Kosamu, I. B. M. & Utembe, W. R. A review of metal levels in urban dust, their methods of determination, and risk assessment. Atmosphere 12, 891 (2021).
Google Scholar
-
Tegen, I., Lacis, A. & Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380, 419–422 (1996).
Google Scholar
-
Willison, M. J., Clarke, A. G. & Zeki, E. M. Chloride aerosols in central northern England. Atmos. Environ. 23, 2231–2239 (1989).
Google Scholar
-
Thorslund, J., Bierkens, M. F. P., Oude Essink, G. H. P., Sutanudjaja, E. H. & van Vliet, M. T. H. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 12, 4232 (2021).
Google Scholar
-
Yakirevich, A. et al. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: a study of the Alto Piura aquifer, Peru. J. Hydrol. 482, 25–39 (2013).
Google Scholar
-
Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).
Google Scholar
-
Hinckley, E.-L. S., Crawford, J. T., Fakhraei, H. & Driscoll, C. T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597–604 (2020).
Google Scholar
-
Page, K. L. et al. Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review. Soil Res. 47, 747–762 (2009).
Google Scholar
-
Thorslund, J. & van Vliet, M. T. H. A global dataset of surface water and groundwater salinity measurements from 1980–2019. Sci. Data 7, 231 (2020).
Google Scholar
-
United Nations Environment Programme. GEMStat database of the Global Environment Monitoring System for Freshwater (GEMS/Water) programme. GEMStat https://gemstat.org/data/data-portal (2018).
-
Environment and Climate Change Canada. National long-term water quality monitoring data. ECCC https://data.ec.gc.ca/data/substances/monitor/national-long-term-water-qualitymonitoring-data (2022).
-
US Geological Survey. USGS water data for the nation. USGS https://waterdata.usgs.gov/nwis (2021).
-
Elvidge, C. D. et al. Global distribution and density of constructed impervious surfaces. Sensors 7, 1962–1979 (2007).
Google Scholar
-
Glicksman, R. L. & Earnhart, D. H. The comparative effectiveness of government interventions on environmental performance in the chemical industry. Stanf. Environ. Law J. 26, 317–372 (2007).
-
Schroeder, C. Foreword: a decade of change in regulating the chemical industry. Law Contemp. Probl. 46, 1–40 (1983).
-
Wetzel, R. G. Limnology: Lake and River Ecosystems (Gulf Professional, 2001).
-
Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Phil. Trans. R. Soc. B 374, 20180005 (2019).
Google Scholar
Acknowledgements
This work was supported by National Science Foundation GCR 2021089 and 2021015, Maryland Sea Grant SA75281870W and the Washington Metropolitan Council of Governments contract number 21-001.
Author information
Authors and Affiliations
Contributions
S.S.K., G.E.L., P.M.M., R.R.S., S.A.S., S.B.G., R.M.U. and M.A.R. contributed to writing of the paper. R.R.S., S.A.S., R.M.U., A.M.Y., C.M.M., J.E.R., S.V.B. and J.T.M. contributed to researching data. All the authors contributed to the discussion of content and review and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks William Hintz, Miguel Cañedo-Argüelles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
GEMStat:
https://gemstat.org
Supplementary information
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
About this article
Cite this article
Kaushal, S.S., Likens, G.E., Mayer, P.M. et al. The anthropogenic salt cycle.
Nat Rev Earth Environ (2023). https://doi.org/10.1038/s43017-023-00485-y
-
Accepted: 05 September 2023
-
Published: 31 October 2023
-
DOI: https://doi.org/10.1038/s43017-023-00485-y