The gut microbiome connects nutrition and human health


Abstract

The gut microbiome has an undeniable role in mediating the health effects of the diet, given its ability to co-digest nutrients and influence nutrient signalling to multiple organ systems. As a suboptimal diet is a major risk factor for and contributor to disease, understanding the multidirectional interactions between the food we eat, the gut microbiome and the different body organ systems is crucial from a public health perspective. Indeed, this research area is leading to the refinement of nutritional concepts and strategies to optimize health through diet. In this Review, we provide an update on how dietary patterns and food intake shape gut microbiome features, the mode of action of diet–microorganism interactions on the immune, nervous and cardiometabolic systems and how this knowledge could explain the heterogeneity of dietary responses, and support food-based dietary guidelines and medical and precision nutrition. Finally, we discuss the knowledge gaps and research efforts needed to progress towards the integration of microbiome science with more precise dietary advice to leverage the role of nutrition in human health.

Key points

  • Exploring the granularity of the diet and multidimensional aspects of foods together with advanced big data-driven analyses offers opportunities to better capture diet–microbiome–health relationships and explain unsolved response patterns and mechanisms in humans.

  • Microbially produced metabolites from dietary sources and microbial cell structural constituents have been demonstrated to regulate immune, endocrine and nervous system functions, supporting their causal role in diverse health domains.

  • Current food-based dietary guidelines are not yet microbiome-oriented but generally provide advice for maintaining diet–microorganism synergies relevant to human health.

  • Further understanding of the contribution of the gut microbiome to the heterogeneity of diet-related responses is vital to optimizing the role of nutrition in public health.

  • The gut microbiome contributes to postprandial responses to meals, suggesting the potential to predict the long-term health consequences of our diet more accurately.

  • The response to the diet and the links to the gut microbiome vary in health and disease contexts and need to be scrutinized for the development of more precise nutritional practices.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

/* style specs start */

/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */

Fig. 1: Dietary orchestration of gut barrier and immunity is linked to the microbiome.
Fig. 2: Diet and gut microbiome interactions orchestrate nervous system function.
Fig. 3: Dietary influence on cardio-metabolism is linked to the gut microbiome.

References

  1. GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2162–2203 (2024).

    Article 

    Google Scholar 

  2. Willett, W. et al. Food in the anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 
    PubMed 

    Google Scholar 

  3. Mozaffarian, D., Callahan, E. A., Glickman, D. & Maitin-Shepard, M. Developing a national nutrition policy strategy to advance cardiometabolic health and health equity. Cell Metab. 36, 651–654 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  4. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific opinion on establishing food‐based dietary guidelines. EFSA J. 8, 1460 (2010).

    Google Scholar 

  5. Gkouskou, K. K. et al. A genomics perspective of personalized prevention and management of obesity. Hum. Genomics 18, 4 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  6. Sanz, Y. et al. Towards microbiome-informed dietary recommendations for promoting metabolic and mental health: opinion papers of the MyNewGut project. Clin. Nutr. 37, 2191–2197 (2018).

    Article 
    PubMed 

    Google Scholar 

  7. Chadaideh, K. S. & Carmody, R. N. Host-microbial interactions in the metabolism of different dietary fats. Cell Metab. 33, 857–872 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  8. Perler, B. K., Friedman, E. S. & Wu, G. D. The role of the gut microbiota in the relationship between diet and human health. Annu. Rev. Physiol. 85, 449–468 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  9. Wolter, M. et al. Leveraging diet to engineer the gut microbiome. Nat. Rev. Gastroenterol. Hepatol. 18, 885–902 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  10. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  11. Carmody, R. N., Varady, K. & Turnbaugh, P. J. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 187, 3857–3876 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  12. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  13. Wingrove, K., Lawrence, M. A. & McNaughton, S. A. A systematic review of the methods used to assess and report dietary patterns. Front. Nutr. 9, 892351 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  14. Carson, T. L. et al. Rationale and study protocol for a randomized controlled feeding study to determine the structural- and functional-level effects of diet-specific interventions on the gut microbiota of non-Hispanic black and white adults. Contemp. Clin. Trials 123, 106968 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  15. Bowyer, R. C. E. et al. Use of dietary indices to control for diet in human gut microbiota studies. Microbiome 6, 77 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  16. Xiao, C. et al. Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. Am. J. Clin. Nutr. 116, 1049–1058 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  17. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  18. Choi, Y., Hoops, S. L., Thoma, C. J. & Johnson, A. J. A guide to dietary pattern–microbiome data integration. J. Nutr. 152, 1187–1199 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  19. Cotillard, A. et al. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. Am. J. Clin. Nutr. 115, 432–443 (2022).

    Article 
    PubMed 

    Google Scholar 

  20. Kase, B. E. et al. The development and evaluation of a literature-based dietary index for gut microbiota. Nutrients 16, 1045 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  21. Tagliamonte, S. et al. Relationships between diet and gut microbiome in an Italian and Dutch cohort: does the dietary protein to fiber ratio play a role? Eur. J. Nutr. 63, 741–750 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  22. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  24. O’Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article 
    PubMed 

    Google Scholar 

  25. Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  26. Fragiadakis, G. K. et al. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. Am. J. Clin. Nutr. 111, 1127–1136 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Muralidharan, J. et al. Effect on gut microbiota of a 1-y lifestyle intervention with Mediterranean diet compared with energy-reduced Mediterranean diet and physical activity promotion: PREDIMED-plus study. Am. J. Clin. Nutr. 114, 1148–1158 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Bermingham, K. M. et al. Effects of a personalized nutrition program on cardiometabolic health: a randomized controlled trial. Nat. Med. 30, 1888–1897 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  29. Wan, Y. et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68, 1417–1429 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  30. Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  31. Gutierrez Lopez, D. E., Lashinger, L. M., Weinstock, G. M. & Bray, M. S. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 33, 873–887 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  32. Lotti, S., Dinu, M., Colombini, B., Amedei, A. & Sofi, F. Circadian rhythms, gut microbiota, and diet: possible implications for health. Nutr. Metab. Cardiovasc. Dis. 33, 1490–1500 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  33. Ratiner, K., Shapiro, H., Goldenberg, K. & Elinav, E. Time-limited diets and the gut microbiota in cardiometabolic disease. J. Diabetes 14, 377–393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Bermingham, K. M. et al. Exploring the relationship between social jetlag with gut microbial composition, diet and cardiometabolic health, in the ZOE PREDICT 1 cohort. Eur. J. Nutr. 62, 3135–3147 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  36. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  37. Frankenfeld, C. L. et al. The gut microbiome is associated with circulating dietary biomarkers of fruit and vegetable intake in a multiethnic cohort. J. Acad. Nutr. Diet. 122, 78–98 (2022).

    Article 
    PubMed 

    Google Scholar 

  38. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  39. Partula, V. et al. Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. Am. J. Clin. Nutr. 109, 1472–1483 (2019).

    Article 
    PubMed 

    Google Scholar 

  40. Maukonen, M. et al. Associations of plant-based foods, red and processed meat, and dairy with gut microbiome in Finnish adults. Eur. J. Nutr. 63, 2247–2260 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  41. Koponen, K. K. et al. Associations of healthy food choices with gut microbiota profiles. Am. J. Clin. Nutr. 114, 605–616 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  42. Yu, D. et al. Long-term diet quality is associated with gut microbiome diversity and composition among urban Chinese adults. Am. J. Clin. Nutr. 113, 684–694 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  43. Borrello, K. et al. Dietary intake mediates ethnic differences in gut microbial composition. Nutrients 14, 660 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  44. Latorre-Pérez, A. et al. The Spanish gut microbiome reveals links between microorganisms and Mediterranean diet. Sci. Rep. 11, 21602 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  45. Houttu, V. et al. Physical activity and dietary composition relate to differences in gut microbial patterns in a multi-ethnic cohort – the HELIUS study. Metabolites 11, 858 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  46. Le Roy, C. I. et al. Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome. BMC Microbiol. 22, 39 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  47. Jiang, Z. et al. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: results from two large human cohort studies. BMC Med. 18, 371 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Aasmets, O., Krigul, K. L., Lüll, K., Metspalu, A. & Org, E. Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort. Nat. Commun. 13, 869 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  49. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  50. Miller, V. et al. Global dietary quality in 185 countries from 1990 to 2018 show wide differences by nation, age, education, and urbanicity. Nat. Food 3, 694–702 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  51. Jardon, K. M., Canfora, E. E., Goossens, G. H. & Blaak, E. E. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 71, 1214–1226 (2022).

    Article 
    PubMed 

    Google Scholar 

  52. Arnone, D. et al. Sugars and gastrointestinal health. Clin. Gastroenterol. Hepatol. 20, 1912–1924.e7 (2022).

    Article 
    PubMed 

    Google Scholar 

  53. Fernández-Bañares, F. Carbohydrate maldigestion and intolerance. Nutrients 14, 1923 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. Blachier, F. et al. High-protein diets for weight management: interactions with the intestinal microbiota and consequences for gut health. A position paper by the My New Gut study group. Clin. Nutr. 38, 1012–1022 (2019).

    Article 
    PubMed 

    Google Scholar 

  55. Bartlett, A. & Kleiner, M. Dietary protein and the intestinal microbiota: an understudied relationship. iScience 25, 105313 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  56. Fassarella, M. et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 70, 595–605 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  57. Li, D. et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Am. J. Clin. Nutr. 116, 230–243 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  58. Wolters, M. et al. Dietary fat, the gut microbiota, and metabolic health – a systematic review conducted within the MyNewGut project. Clin. Nutr. 38, 2504–2520 (2019).

    Article 
    PubMed 

    Google Scholar 

  59. Lemons, J. M. S. & Liu, L. Chewing the fat with microbes: lipid crosstalk in the gut. Nutrients 14, 573 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  60. Natividad, J. M. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 9, 2802 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  61. Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  62. Pham, V. T., Dold, S., Rehman, A., Bird, J. K. & Steinert, R. E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 95, 35–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  63. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  64. Musiol, S. et al. The impact of high-salt diet on asthma in humans and mice: effect on specific T-cell signatures and microbiome. Allergy 79, 1844–1857 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  65. Spiga, L. et al. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 31, 1639–1654.e10 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  66. Martin, O. C. B. et al. Haem iron reshapes colonic luminal environment: impact on mucosal homeostasis and microbiome through aldehyde formation. Microbiome 7, 72 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  67. Mervant, L. et al. Urinary metabolome analysis reveals potential microbiota alteration and electrophilic burden induced by high red meat diet: results from the French NutriNet-Santé cohort and an in vivo intervention study in rats. Mol. Nutr. Food Res. 67, e2200432 (2023).

    Article 
    PubMed 

    Google Scholar 

  68. Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  69. Pereira, Q. C. et al. Polyphenolic compounds: orchestrating intestinal microbiota harmony during aging. Nutrients 16, 1066 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  70. Meijnikman, A. S. et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat. Med. 28, 2100–2106 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  71. Srour, B. et al. Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. Lancet Gastroenterol. Hepatol. 7, 1128–1140 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  72. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  73. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Di Vincenzo, F., Del Gaudio, A., Petito, V., Lopetuso, L. R. & Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern. Emerg. Med. 19, 275–293 (2024).

    Article 
    PubMed 

    Google Scholar 

  75. Chae, Y.-R., Lee, Y. R., Kim, Y.-S. & Park, H.-Y. Diet-induced gut dysbiosis and leaky gut syndrome. J. Microbiol. Biotechnol. 34, 747–756 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  76. Ito, H. et al. Soluble fiber viscosity affects both goblet cell number and small intestine mucin secretion in rats. J. Nutr. 139, 1640–1647 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  77. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  78. Belzer, C. Nutritional strategies for mucosal health: the interplay between microbes and mucin glycans. Trends Microbiol. 30, 13–21 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  79. Mukherjee, S. & Hooper, L. V. Antimicrobial defense of the intestine. Immunity 42, 28–39 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  80. Keir, M., Yi, T., Lu, T. & Ghilardi, N. The role of IL-22 in intestinal health and disease. J. Exp. Med. 217, e20192195 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  81. Feng, Z., Sun, R., Cong, Y. & Liu, Z. Critical roles of G protein-coupled receptors in regulating intestinal homeostasis and inflammatory bowel disease. Mucosal Immunol. 15, 819–828 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  82. Stockinger, B., Shah, K. & Wincent, E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol. 18, 559–570 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  83. Kahalehili, H. M. et al. Dietary indole-3-carbinol activates AhR in the gut, alters Th17-microbe interactions, and exacerbates insulitis in NOD mice. Front. Immunol. 11, 606441 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  84. Song, Y. et al. Molecular and structural basis of interactions of vitamin D3 hydroxyderivatives with aryl hydrocarbon receptor (AhR): an integrated experimental and computational study. Int. J. Biol. Macromol. 209, 1111–1123 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  85. Bora, S. A., Kennett, M. J., Smith, P. B., Patterson, A. D. & Cantorna, M. T. The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23. Front. Immunol. 9, 408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  86. Aoki, R., Aoki-Yoshida, A., Suzuki, C. & Takayama, Y. Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J. Immunol. 201, 3683–3693 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  87. Woo, V. et al. Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host Microbe 29, 1744–1756.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  88. Han, X. et al. Dietary regulation of the SIgA–gut microbiota interaction. Crit. Rev. Food Sci. Nutr. 63, 6379–6392 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  89. Shin, S. Y. et al. Compositional changes in the gut microbiota of responders and non-responders to probiotic treatment among patients with diarrhea-predominant irritable bowel syndrome: a post hoc analysis of a randomized clinical trial. J. Neurogastroenterol. Motil. 28, 642–654 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  90. Yu, M. et al. Aryl hydrocarbon receptor activation modulates intestinal epithelial barrier function by maintaining tight junction integrity. Int. J. Biol. Sci. 14, 69–77 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  91. Feng, W. et al. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner. Cell. Physiol. Biochem. 47, 1617–1629 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  92. Li, X., Yao, Z., Qian, J., Li, H. & Li, H. Lactate protects intestinal epithelial barrier function from dextran sulfate sodium-induced damage by GPR81 signaling. Nutrients 16, 582 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  93. Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity 41, 296–310 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  94. He, C. et al. Vitamin A inhibits the action of LPS on the intestinal epithelial barrier function and tight junction proteins. Food Funct. 10, 1235–1242 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  95. Cho, Y.-E. et al. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress. Hepatology 73, 2180–2195 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  96. Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A. & Parthasarathy, S. Negative effects of a high-fat diet on intestinal permeability: a review. Adv. Nutr. 11, 77–91 (2020).

    Article 
    PubMed 

    Google Scholar 

  97. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  98. Siracusa, F. et al. Short-term dietary changes can result in mucosal and systemic immune depression. Nat. Immunol. 24, 1473–1486 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  99. Tan, J. et al. Your regulatory T cells are what you eat: how diet and gut microbiota affect regulatory T cell development. Front. Nutr. 9, 878382 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  100. Bakdash, G., Vogelpoel, L. T. C., van Capel, T. M. M., Kapsenberg, M. L. & de Jong, E. C. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol. 8, 265–278 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  101. Xie, L., Alam, M. J., Marques, F. Z. & Mackay, C. R. A major mechanism for immunomodulation: dietary fibres and acid metabolites. Semin. Immunol. 66, 101737 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  102. Kayama, H. & Takeda, K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur. J. Immunol. 53, e2249866 (2023).

    Article 
    PubMed 

    Google Scholar 

  103. Urry, Z. et al. The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur. J. Immunol. 42, 2697–2708 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  104. Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  105. Kelly, B. & Pearce, E. L. Amino assets: how amino acids support immunity. Cell Metab. 32, 154–175 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  106. Bauché, D. & Marie, J. C. Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clin. Transl. Immunol. 6, e136 (2017).

    Article 

    Google Scholar 

  107. Elias, K. M. et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111, 1013–1020 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  108. Paudel, S., Mishra, N. & Agarwal, R. Phytochemicals as immunomodulatory molecules in cancer therapeutics. Pharmaceuticals 16, 1652 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  109. Rodrigues, H. G., Takeo Sato, F., Curi, R. & Vinolo, M. A. R. Fatty acids as modulators of neutrophil recruitment, function and survival. Eur. J. Pharmacol. 785, 50–58 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  110. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  111. Nastasi, C. et al. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci. Rep. 7, 14516 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  112. Li, S., Bostick, J. W. & Zhou, L. Regulation of innate lymphoid cells by aryl hydrocarbon receptor. Front. Immunol. 8, 1909 (2017).

    Article 
    PubMed 

    Google Scholar 

  113. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  114. Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  115. Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  116. Thibaut, M. M. & Bindels, L. B. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol. Med. 28, 223–236 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  117. Zmora, N., Levy, M., Pevsner-Fishcer, M. & Elinav, E. Inflammasomes and intestinal inflammation. Mucosal Immunol. 10, 865–883 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  118. Swanson, K. V., Deng, M. & Ting, J. P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  119. Zheng, D. et al. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat. Immunol. 24, 585–594 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  120. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  121. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  122. Yan, Y. et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154–1163 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  123. Schneider, E., O’Riordan, K. J., Clarke, G. & Cryan, J. F. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota–gut–brain axis. Nat. Metab. 6, 1454–1478 (2024).

    Article 
    PubMed 

    Google Scholar 

  124. Knox, E. G. et al. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood–brain barrier function. iScience 25, 105648 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  125. O’Riordan, K. J. et al. Short chain fatty acids: microbial metabolites for gut–brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).

    Article 
    PubMed 

    Google Scholar 

  126. Spichak, S. et al. Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease. Neurosci. Biobehav. Rev. 125, 698–761 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  127. McGuinness, A. J. et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry 27, 1920–1935 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  128. Nikolova, V. L. et al. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry 78, 1343–1354 (2021).

    Article 
    PubMed 

    Google Scholar 

  129. Aslam, H. et al. Fiber intake and fiber intervention in depression and anxiety: a systematic review and meta-analysis of observational studies and randomized controlled trials. Nutr. Rev. 82, 1678–1695 (2024).

    Article 
    PubMed 

    Google Scholar 

  130. Provensi, G. et al. Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proc. Natl Acad. Sci. USA 116, 9644–9651 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  131. Kerman, B. E., Self, W. & Yassine, H. N. Can the gut microbiome inform the effects of omega-3 fatty acid supplementation trials on cognition? Curr. Opin. Clin. Nutr. Metab. Care 27, 116–124 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  132. Miyamoto, J. et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat. Commun. 10, 4007 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  133. Schverer, M. et al. Dietary phospholipids: role in cognitive processes across the lifespan. Neurosci. Biobehav. Rev. 111, 183–193 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  134. Ross, F. C. et al. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota?. Nutr. Neurosci. 27, 1058–1076 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  135. Brickman, A. M. et al. Dietary flavanols restore hippocampal-dependent memory in older adults with lower diet quality and lower habitual flavanol consumption. Proc. Natl Acad. Sci. USA 120, e2216932120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  136. Karbownik, M. S., Mokros, Ł. & Kowalczyk, E. Who benefits from fermented food consumption? A comparative analysis between psychiatrically Ill and psychiatrically healthy medical students. Int. J. Environ. Res. Public. Health 19, 3861 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  137. Balasubramanian, R., Schneider, E., Gunnigle, E., Cotter, P. D. & Cryan, J. F. Fermented foods: harnessing their potential to modulate the microbiota–gut–brain axis for mental health. Neurosci. Biobehav. Rev. 158, 105562 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  138. Caffrey, E. B., Sonnenburg, J. L. & Devkota, S. Our extended microbiome: the human-relevant metabolites and biology of fermented foods. Cell Metab. 36, 684–701 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  139. Berding, K. et al. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 28, 601–610 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  140. Conn, K. A., Borsom, E. M. & Cope, E. K. Implications of microbe-derived γ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer’s disease. Gut Microbes 16, 2371950 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  141. Bermudez-Martin, P. et al. The microbial metabolite p-cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. Microbiome 9, 157 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  142. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  143. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  144. Pedersen, M. G. B. et al. Oral lactate slows gastric emptying and suppresses appetite in young males. Clin. Nutr. 41, 517–525 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  145. Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  146. Engelstoft, M. S. et al. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol. Metab. 2, 376–392 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  147. Fukumoto, S. et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1269–R1276 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  148. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell 156, 84–96 (2014).

    Article 
    PubMed 

    Google Scholar 

  149. Marin, E. et al. Human tolerogenic dendritic cells regulate immune responses through lactate synthesis. Cell Metab. 30, 1075–1090.e8 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  150. Luo, Y. et al. Effects of lactate in immunosuppression and inflammation: progress and prospects. Int. Rev. Immunol. 41, 19–29 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  151. Jocken, J. W. E. et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front. Endocrinol. 8, 372 (2017).

    Article 

    Google Scholar 

  152. Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  153. Hu, J. et al. The roles of GRP81 as a metabolic sensor and inflammatory mediator. J. Cell. Physiol. 235, 8938–8950 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  154. Reddy, A. et al. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. Nat. Metab. 6, 567–577 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  155. Kimura, I. et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829 (2013).

    Article 
    PubMed 

    Google Scholar 

  156. Villanueva-Carmona, T. et al. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab. 35, 601–619.e10 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  157. Müller, M. et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci. Rep. 9, 12515 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  158. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  159. Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  160. Wang, K. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 26, 222–235.e5 (2019).

    Article 
    PubMed 

    Google Scholar 

  161. Osuna-Prieto, F. J. et al. Elevated plasma succinate levels are linked to higher cardiovascular disease risk factors in young adults. Cardiovasc. Diabetol. 20, 151 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  162. Serena, C. et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J. 12, 1642–1657 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  163. Ding, Y. et al. Oral supplementation of gut microbial metabolite indole-3-acetate alleviates diet-induced steatosis and inflammation in mice. eLife 12, RP87458 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  164. Min, B. H. et al. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation. Gut Microbes 16, 2307568 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  165. Wang, Z. et al. Gut microbiota and blood metabolites related to fiber intake and type 2 diabetes. Circ. Res. 134, 842–854 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  166. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  167. Lu, C. et al. Indoxyl sulfate in atherosclerosis. Toxicol. Lett. 383, 204–212 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  168. Zhu, Y. et al. Two distinct gut microbial pathways contribute to meta-organismal production of phenylacetylglutamine with links to cardiovascular disease. Cell Host Microbe 31, 18–32.e9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  169. Romano, K. A. et al. Gut microbiota-generated phenylacetylglutamine and heart failure. Circ. Heart Fail. 16, e009972 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  170. Han, H. et al. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. J. Am. Heart Assoc. 4, e001852 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  171. Kok, C. R., Rose, D. & Hutkins, R. Predicting personalized responses to dietary fiber interventions: opportunities for modulation of the gut microbiome to improve health. Annu. Rev. Food Sci. Technol. 14, 157–182 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  172. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  173. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  174. Fromentin, S. et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat. Med. 28, 303–314 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  175. Li, T.-T. et al. Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology. Cell Host Microbe 32, 661–675.e10 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  176. Choi, B. H., Hyun, S. & Koo, S.-H. The role of BCAA metabolism in metabolic health and disease. Exp. Mol. Med. 56, 1552–1559 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  177. Rigamonti, A. E. et al. The appetite-suppressant and GLP-1-stimulating effects of whey proteins in obese subjects are associated with increased circulating levels of specific amino acids. Nutrients 12, 775 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  178. Magkos, F. The role of dietary protein in obesity. Rev. Endocr. Metab. Disord. 21, 329–340 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  179. Kenny, D. J. et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28, 245–257.e6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  180. Romaní-Pérez, M. et al. Holdemanella biformis improves glucose tolerance and regulates GLP-1 signaling in obese mice. FASEB J. 35, e21734 (2021).

    Article 
    PubMed 

    Google Scholar 

  181. Takeuchi, T. et al. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metab. 35, 361–375.e9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  182. Wei, W. et al. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid. Nat. Microbiol. 8, 1534–1548 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  183. Johnson, E. L. et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat. Commun. 11, 2471 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  184. Liu, C. et al. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat. Microbiol. 9, 434–450 (2024).

    Article 
    PubMed 

    Google Scholar 

  185. Kuhre, R. E. et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 11, 84–95 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  186. Zheng, X. et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803.e7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  187. Browning, M. G., Pessoa, B. M., Khoraki, J. & Campos, G. M. Changes in bile acid metabolism, transport, and signaling as central drivers for metabolic improvements after bariatric surgery. Curr. Obes. Rep. 8, 175–184 (2019).

    Article 
    PubMed 

    Google Scholar 

  188. Makki, K. et al. 6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut 72, 314–324 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  189. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  190. Wahlström, A. et al. Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism. Nat. Commun. 15, 4276 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  191. Guzior, D. V. et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature 626, 852–858 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  192. Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379–390.e3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  193. Belda, E. et al. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut 71, 2463–2480 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  194. Sun, Y. et al. Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a. Nat. Commun. 14, 7740 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  195. Man, A. W. C., Zhou, Y., Xia, N. & Li, H. Involvement of gut microbiota, microbial metabolites and interaction with polyphenol in host immunometabolism. Nutrients 12, 3054 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  196. Yoon, H. S. et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  197. Grasset, E. et al. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut–brain axis mechanism. Cell Metab. 25, 1075–1090.e5 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  198. Liang, C. et al. Ligilactobacillus salivarius LCK11 prevents obesity by promoting PYY secretion to inhibit appetite and regulating gut microbiota in C57BL/6J mice. Mol. Nutr. Food Res. 65, e2100136 (2021).

    Article 
    PubMed 

    Google Scholar 

  199. Food and Agriculture Organization. Dietary guidelines. FAO www.fao.org/nutrition/education/food-dietary-guidelines/home/en/ (2025).

  200. Hercberg, S., Touvier, M., Salas-Salvado, J. & Group of European scientists supporting the implementation of Nutri-Score in Europe. The nutri-score nutrition label. Int. J. Vitam. Nutr. Res. 92, 147–157 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  201. Nutri-Score European Scientific Committee. Nutri-Score. Santé publique, France www.santepubliquefrance.fr/en/nutri-score (2025).

  202. Reyes, M. et al. Development of the Chilean front-of-package food warning label. BMC Public. Health 19, 906 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  203. Srour, B. et al. Effect of a new graphically modified Nutri-Score on the objective understanding of foods’ nutrient profile and ultraprocessing: a randomised controlled trial. BMJ Nutr. Prev. Health 6, 108–118 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  204. Merten, C. et al. Editorial: exploring the need to include microbiomes into EFSA’s scientific assessments. EFSA J. 18, e18061 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  205. Garcia-Vello, P. et al. Preparing for future challenges in risk assessment in the European Union. Trends Biotechnol. 40, 1137–1140 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  206. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 8, 1462 (2010).

    Google Scholar 

  207. Hoge Gezonheidsraad. Voedingsaanbevelingen voor Belgie. HGR Nr. 9285. HGR www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/9285_voedingsaanbev_16122016_a5.pdf (2016).

  208. Vorster, H. H., Badham, J. B. & Venter, C. S. An introduction to the revised food-based dietary guidelines for South Africa. S. Afr. J. Clin. Nutr. 26, S5–S12 (2013).

    Google Scholar 

  209. Dietary Guidelines Advisory Committee. Scientific report of the 2020 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Agriculture and the Secretary of Health and Human Services. Dietary Guidelines for Americans www.dietaryguidelines.gov/2020-advisory-committee-report (2020).

  210. McKeown, N. M., Fahey, G. C., Slavin, J. & van der Kamp, J.-W. Fibre intake for optimal health: how can healthcare professionals support people to reach dietary recommendations? BMJ 378, e054370 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  211. Ou, J. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  212. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  213. Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research group. N. Engl. J. Med. 336, 1117–1124 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  214. Paeslack, N. et al. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids 54, 1339–1356 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  215. Kaye, D. M. et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation 141, 1393–1403 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  216. Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  217. Shoer, S. et al. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines. Nat. Commun. 14, 5384 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  218. Dinan, T. G. et al. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clin. Nutr. 38, 1995–2001 (2019).

    Article 
    PubMed 

    Google Scholar 

  219. Morris, M. C. et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 11, 1015–1022 (2015).

    Article 
    PubMed 

    Google Scholar 

  220. Agarwal, P. et al. MIND diet associated with reduced incidence and delayed progression of parkinsonism in old age. J. Nutr. Health Aging 22, 1211–1215 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  221. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  222. MahmoudianDehkordi, S. et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease – an emerging role for gut microbiome. Alzheimers Dement. 15, 76–92 (2019).

    Article 
    PubMed 

    Google Scholar 

  223. Valls-Pedret, C. et al. Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J. Alzheimers Dis. 29, 773–782 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  224. Torabynasab, K. et al. Adherence to the MIND diet is inversely associated with odds and severity of anxiety disorders: a case-control study. BMC Psychiatry 23, 330 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  225. Prince, A. C. et al. Fermentable carbohydrate restriction (low FODMAP diet) in clinical practice improves functional gastrointestinal symptoms in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 22, 1129–1136 (2016).

    Article 
    PubMed 

    Google Scholar 

  226. Kamphuis, J. B. J. et al. Lactose and fructo-oligosaccharides increase visceral sensitivity in mice via glycation processes, increasing mast cell density in colonic mucosa. Gastroenterology 158, 652–663.e6 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  227. Wielgosz-Grochowska, J. P., Domanski, N. & Drywień, M. E. Efficacy of an irritable bowel syndrome diet in the treatment of small intestinal bacterial overgrowth: a narrative review. Nutrients 14, 3382 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  228. Garg, P., Garg, P. K. & Bhattacharya, K. Psyllium husk positively alters gut microbiota, decreases inflammation, and has bowel-regulatory action, paving the way for physiologic management of irritable bowel syndrome. Gastroenterology 166, 545–546 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  229. Sanz, Y. Microbiome and gluten. Ann. Nutr. Metab. 67, 28–41 (2015).

    Article 
    PubMed 

    Google Scholar 

  230. Caminero, A. et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 10, 1198 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  231. Matera, M. & Guandalini, S. How the microbiota may affect celiac disease and what we can do. Nutrients 16, 1882 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  232. Adolfsen, K. J. et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat. Commun. 12, 6215 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  233. Bassanini, G. et al. Phenylketonuria diet promotes shifts in Firmicutes populations. Front. Cell. Infect. Microbiol. 9, 101 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  234. Verduci, E. et al. Phenylketonuric diet negatively impacts on butyrate production. Nutr. Metab. Cardiovasc. Dis. 28, 385–392 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  235. Misselwitz, B., Butter, M., Verbeke, K. & Fox, M. R. Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut 68, 2080–2091 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  236. Azcarate-Peril, M. A. et al. A double-blind, 377-subject randomized study identifies Ruminococcus, Coprococcus, Christensenella, and Collinsella as long-term potential key players in the modulation of the gut microbiome of lactose intolerant individuals by galacto-oligosaccharides. Gut Microbes 13, 1957536 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  237. Angima, G., Qu, Y., Park, S. H. & Dallas, D. C. Prebiotic strategies to manage lactose intolerance symptoms. Nutrients 16, 1002 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  238. Ang, Q. Y. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181, 1263–1275.e16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  239. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173, 1728–1741.e13 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  240. Li, Q., Liang, J., Fu, N., Han, Y. & Qin, J. A ketogenic diet and the treatment of autism spectrum disorder. Front. Pediatr. 9, 650624 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  241. Muscogiuri, G. et al. The management of very low-calorie ketogenic diet in obesity outpatient clinic: a practical guide. J. Transl. Med. 17, 356 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  242. Fitzpatrick, J. A., Melton, S. L., Yao, C. K., Gibson, P. R. & Halmos, E. P. Dietary management of adults with IBD – the emerging role of dietary therapy. Nat. Rev. Gastroenterol. Hepatol. 19, 652–669 (2022).

    Article 
    PubMed 

    Google Scholar 

  243. Levine, A. et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157, 440–450.e8 (2019).

    Article 
    PubMed 

    Google Scholar 

  244. Armstrong, H., Mander, I., Zhang, Z., Armstrong, D. & Wine, E. Not all fibers are born equal; variable response to dietary fiber subtypes in IBD. Front. Pediatr. 8, 620189 (2020).

    Article 
    PubMed 

    Google Scholar 

  245. Hume, M. P., Nicolucci, A. C. & Reimer, R. A. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am. J. Clin. Nutr. 105, 790–799 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  246. Birkeland, E. et al. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur. J. Nutr. 59, 3325–3338 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  247. Limketkai, B. N. et al. Prebiotics for induction and maintenance of remission in inflammatory bowel disease: systematic review and meta-analysis. Inflamm. Bowel Dis. 31, 1220–1230 (2025).

    Article 
    PubMed 

    Google Scholar 

  248. Talukdar, J. R. et al. The effects of inulin-type fructans on cardiovascular disease risk factors: systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 119, 496–510 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  249. Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 611, 578–584 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  250. Yang, J. et al. High soluble fiber promotes colorectal tumorigenesis through modulating gut microbiota and metabolites in mice. Gastroenterology 166, 323–337.e7 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  251. Siscovick, D. S. et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a Science Advisory from the American Heart Association. Circulation 135, e867–e884 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  252. La Rosa, F. et al. The gut-brain axis in Alzheimer’s disease and omega-3. A critical overview of clinical trials. Nutrients 10, 1267 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  253. Okburan, G. & Kızıler, S. Human milk oligosaccharides as prebiotics. Pediatr. Neonatol. 64, 231–238 (2023).

    Article 
    PubMed 

    Google Scholar 

  254. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article 
    PubMed 

    Google Scholar 

  255. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  256. Veiga, P., Suez, J., Derrien, M. & Elinav, E. Moving from probiotics to precision probiotics. Nat. Microbiol. 5, 878–880 (2020).

    Article 
    PubMed 

    Google Scholar 

  257. Michaudel, C. et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut 72, 1296–1307 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  258. Milani, G. P. et al. A systematic review and meta-analysis on nutritional and dietary interventions for the treatment of acute respiratory infection in pediatric patients: An EAACI taskforce. Allergy 79, 1687–1707 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  259. Manson, J. E. et al. The Women’s Health Initiative randomized trials and clinical practice: a review. JAMA 331, 1748–1760 (2024).

    Article 
    PubMed 

    Google Scholar 

  260. Dehghan, M. et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390, 2050–2062 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  261. Zeisel, S. H. Precision (personalized) nutrition: understanding metabolic heterogeneity. Annu. Rev. Food Sci. Technol. 11, 71–92 (2020).

    Article 
    PubMed 

    Google Scholar 

  262. Lee, B. Y. et al. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am. J. Clin. Nutr. 116, 1877–1900 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  263. Hjorth, M. F. et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int. J. Obes. 42, 580–583 (2018).

    Article 
    CAS 

    Google Scholar 

  264. Christensen, L. et al. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. J. Nutr. 149, 2174–2181 (2019).

    Article 
    PubMed 

    Google Scholar 

  265. Hur, H. J. et al. Beneficial effects of a low-glycemic diet on serum metabolites and gut microbiota in obese women with Prevotella and Bacteriodes enterotypes: a randomized clinical trial. Front. Nutr. 9, 861880 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  266. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  267. Gargari, G. et al. Collinsella aerofaciens as a predictive marker of response to probiotic treatment in non-constipated irritable bowel syndrome. Gut Microbes 16, 2298246 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  268. Son, J., Jang, L.-G., Kim, B.-Y., Lee, S. & Park, H. The effect of athletes’ probiotic intake may depend on protein and dietary fiber intake. Nutrients 12, 2947 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  269. Wastyk, H. C. et al. Randomized controlled trial demonstrates response to a probiotic intervention for metabolic syndrome that may correspond to diet. Gut Microbes 15, 2178794 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  270. Zhang, C. et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 10, 2235–2245 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  271. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  272. Nguyen, N. K. et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome 8, 118 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  273. Rodriguez, J. et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut 69, 1975–1987 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  274. Leshem, A., Segal, E. & Elinav, E. The gut microbiome and individual-specific responses to diet. mSystems 5, e00665-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  275. Wu, W.-K. et al. Characterization of TMAO productivity from carnitine challenge facilitates personalized nutrition and microbiome signatures discovery. Microbiome 8, 162 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  276. Cohen, Y., Valdés-Mas, R. & Elinav, E. The role of artificial intelligence in deciphering diet-disease relationships: case studies. Annu. Rev. Nutr. 43, 225–250 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  277. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  278. Rein, M. et al. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Med. 20, 56 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  279. Ben-Yacov, O. et al. Personalized postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 44, 1980–1991 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  280. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  281. Valdés-Mas, R. et al. Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease. Cell 188, 1062–1083.e36 (2025).

    Article 
    PubMed 

    Google Scholar 

Download references

Acknowledgements

The work of Y.S. is funded by the Spanish Ministry of Science, Innovation and Universities (grant PID2023-150693OB-I00), and a “Severo Ochoa” grant of the National Agency for Research (AEI)–Spanish Ministry of Science and Innovation (ref. CEX2021-001189-S). The work of P.V. is funded in part by a Metagenopolis grant (ANR-11-DPBS-0001) and the PEPR-SAMS Cohortes-Microbiomes Project (ANR-24-PESA-0005). J.F.C. is supported by Science Foundation Ireland (SFI/12/RC/2273_P2), Saks Kavanaugh Foundation and Swiss National Science Foundation (CRSII5_186346/NMS2068). E.E. is supported by the European Union Thrive and Nutriome Consortiums and is a partner, Novo Nordisk Foundation Microbiome Health Initiative (MHI). R.L. is grateful to the Azrieli Foundation for an Azrieli Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the preparing the manuscript.

Corresponding author

Correspondence to
Yolanda Sanz.

Ethics declarations

Competing interests

Y.S. is a co-author of probiotic patents, serves as a scientific adviser for Arla Foods and has been awarded by IFF. P.V. serves as a scientific consultant and adviser for Arla Foods and Newroad Innovations Ltd. J.F.C. is the co-author of probiotic patents and has received research funding from IFF, Nutricia and Kerry Foods, and has been an invited speaker at meetings organized by Bromotech and Nestlé. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Marie Arrieta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz, Y., Cryan, J.F., Deschasaux-Tanguy, M. et al. The gut microbiome connects nutrition and human health.
Nat Rev Gastroenterol Hepatol (2025). https://doi.org/10.1038/s41575-025-01077-5

Download citation

  • Accepted: 02 May 2025

  • Published: 04 June 2025

  • DOI: https://doi.org/10.1038/s41575-025-01077-5


Leave a Reply

Your email address will not be published. Required fields are marked *