Abstract
Klaus Hasselmann’s revolutionary intuition in climate science was to use the stochasticity associated with fast weather processes to probe the slow dynamics of the climate system. Doing so led to fundamentally new ways to study the response of climate models to perturbations, and to perform detection and attribution for climate change signals. Hasselmann’s programme has been extremely influential in climate science and beyond. In this Perspective, we first summarize the main aspects of such a programme using modern concepts and tools of statistical physics and applied mathematics. We then provide an overview of some promising scientific perspectives that might clarify the science behind the climate crisis and that stem from Hasselmann’s ideas. We show how to perform rigorous and data-driven model reduction by constructing parameterizations in systems that do not necessarily feature a timescale separation between unresolved and resolved processes. We outline a general theoretical framework for explaining the relationship between climate variability and climate change, and for performing climate change projections. This framework enables us seamlessly to explain some key general aspects of climatic tipping points. Finally, we show that response theory provides a solid framework supporting optimal fingerprinting methods for detection and attribution.
This is a preview of subscription content, access via your institution
Access options
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
-
Mitchell, J. An overview of climatic variability and its causal mechanisms. Quat. Res. 6, 481–493 (1976).
Google Scholar
-
Ghil, M. A century of nonlinearity in the geosciences. Earth Space Sci. 6, 1007–1042 (2019).
Google Scholar
-
von der Heydt, A. S. et al. Quantification and interpretation of the climate variability record. Glob. Planet. Change 197, 103399 (2021).
Google Scholar
-
Peixoto, J. P. & Oort, A. H. Physics of Climate (AIP, 1992).
-
Lucarini, V. et al. Mathematical and physical ideas for climate science. Rev. Geophys. 52, 809–859 (2014).
Google Scholar
-
Ghil, M. & Lucarini, V. The physics of climate variability and climate change. Rev. Mod. Phys. 92, 035002 (2020).
Google Scholar
-
Ghil, M. in Climate Change: Multidecadal and Beyond (eds Chang, C. P. et al.) 31–51 (World Scientific/Imperial College Press, 2015).
-
Rothman, D. H. Thresholds of catastrophe in the Earth system. Sci. Adv. 3, e1700906 (2017).
Google Scholar
-
Arnscheidt, C. W. & Rothman, D. H. Presence or absence of stabilizing Earth system feedbacks on different time scales. Sci. Adv. 8, eadc9241 (2022).
Google Scholar
-
Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).
-
Hasselmann, K. Optimal fingerprints for the detection of time-dependent climate change. J. Clim. 6, 1957–1971 (1993).
Google Scholar
-
Hegerl, G. C. et al. Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Clim. 9, 2281–2306 (1996).
Google Scholar
-
Hasselmann, K. Multi-pattern fingerprint method for detection and attribution of climate change. Clim. Dyn. 13, 601–611 (1997).
Google Scholar
-
Bindoff, N. L. et al. Detection and Attribution of Climate Change: From Global to Regional, 867–952 (Cambridge Univ. Press, 2013).
-
IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
-
IPCC. Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).
-
Lenton, T. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
Google Scholar
-
Ashwin, P., Wieczorek, S., Vitolo, R. & Cox, P. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Phil. Trans. Royal Soc. A 370, 1166–1184 (2012).
Google Scholar
-
Ripple, W. J. et al. World Scientists’ warning of a climate emergency 2021. BioScience 71, 894–898 (2021).
Google Scholar
-
Ruelle, D. General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A 245, 220–224 (1998).
Google Scholar
-
Ruelle, D. A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009).
Google Scholar
-
Hairer, M. & Majda, A. J. A simple framework to justify linear response theory. Nonlinearity 23, 909–922 (2010).
Google Scholar
-
Baiesi, M. & Maes, C. An update on the nonequilibrium linear response. New J. Phys. 15, 013004 (2013).
Google Scholar
-
Sarracino, A. & Vulpiani, A. On the fluctuation-dissipation relation in non-equilibrium and non-Hamiltonian systems. Chaos 29, 083132 (2019).
Google Scholar
-
Gottwald, G. A. Introduction to focus issue: linear response theory: potentials and limits. Chaos Interdiscip. J. Nonlinear Sci. 30, 20401 (2020).
Google Scholar
-
Santos Gutiérrez, M. & Lucarini, V. On some aspects of the response to stochastic and deterministic forcings. J. Phys. A 55, 425002 (2022).
Google Scholar
-
Ragone, F., Lucarini, V. & Lunkeit, F. A new framework for climate sensitivity and prediction: a modelling perspective. Clim. Dyn. 46, 1459–1471 (2016).
Google Scholar
-
Lucarini, V., Ragone, F. & Lunkeit, F. Predicting climate change using response theory: global averages and spatial patterns. J. Stat. Phys. 166, 1036–1064 (2017).
Google Scholar
-
Aengenheyster, M., Feng, Q. Y., van der Ploeg, F. & Dijkstra, H. A. The point of no return for climate action: effects of climate uncertainty and risk tolerance. Earth Syst. Dyn. 9, 1085–1095 (2018).
Google Scholar
-
Lembo, V., Lucarini, V. & Ragone, F. Beyond forcing scenarios: predicting climate change through response operators in a coupled general circulation model. Sci. Rep. 10, 8668 (2020).
Google Scholar
-
Imkeller, P. & von Storch, J. S. Stochastic Climate Models (Birkhauser, 2001).
-
von Storch, H. From Decoding Turbulence to Unveiling the Fingerprint of Climate Change (Springer, 2022).
-
Gupta, S., Mastrantonas, N., Masoller, C. & Kurths, J. Perspectives on the importance of complex systems in understanding our climate and climate change — the Nobel Prize in Physics 2021. Chaos Interdiscip. J. Nonlinear Sci. https://doi.org/10.1063/5.0090222 (2022).
-
Hegerl, G. C. Climate change is physics. Commun. Earth Environ. 3, 14 (2022).
Google Scholar
-
Hasselmann, K. Stochastic climate models Part I. Theory. Tellus 28, 473–485 (1976).
Google Scholar
-
Arnold, L. in Stochastic Climate Models (eds Imkeller, P. & von Storch, J.-S.) 141–157 (Birkhäuser, 2001).
-
Kelly, D. & Melbourne, I. Deterministic homogenization for fast–slow systems with chaotic noise. J. Funct. Anal. 272, 4063–4102 (2017).
Google Scholar
-
Cotter, C. J., Gottwald, G. A. & Holm, D. D. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics. Proc. R. Soc. A 473, 20170388 (2017).
Google Scholar
-
Just, W., Kantz, H., Rödenbeck, C. & Helm, M. Stochastic modelling: replacing fast degrees of freedom by noise. J. Phys. A 34, 3199–3213 (2001).
Google Scholar
-
Ghil, M. & Childress, S. Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics (Springer, 1987).
-
Lorenz, E. The Nature and Theory of the General Circulation of the Atmosphere (World Meteorological Organization, 1967).
-
Beck, C. Brownian motion from deterministic dynamics. Phys. A 169, 324–336 (1990).
Google Scholar
-
Majda, A. J., Timofeyev, I. & Vanden-Eijnden, E. A mathematical framework for stochastic climate models. Comm. Pure Appl. Math 54, 891–974 (2001).
Google Scholar
-
Pavliotis, G. A. & Stuart, A. M. Multiscale Methods (Springer, 2008).
-
Gottwald, G. A. & Melbourne, I. Homogenization for deterministic maps and multiplicative noise. Proc. R. Soc. A 469, 20130201 (2013).
Google Scholar
-
Khasminsky, R. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theor. Probab. Appl. 8, 1–21 (1963).
Google Scholar
-
Kurtz, T. A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Funct. Anal. 12, 55–67 (1973).
Google Scholar
-
Papanicolaou, G. C. & Kohler, W. Asymptotic theory of mixing stochastic ordinary differential equations. Commun. Pure Appl. Math. 27, 641–668 (1974).
Google Scholar
-
Majda, A. J., Timofeyev, I. & Vanden-Eijnden, E. Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci. 60, 1705–1722 (2003).
Google Scholar
-
Palmer, T. N. & Williams, P. (eds) Stochastic Physics and Climate Modelling (Cambridge Univ. Press, 2009).
-
Berner, J. et al. Stochastic parameterization: toward a new view of weather and climate models. Bull. Am. Meteorol. Soc. 98, 565–588 (2017).
Google Scholar
-
Chekroun, M., Dijkstra, H., Şengül, T. & Wang, S. Transitions of zonal flows in a two-layer quasi-geostrophic ocean model. Nonlinear Dynamics 109, 1887–1904 (2022).
Google Scholar
-
Dijkstra, H. Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large-scale Ocean Circulation and El Niño (Springer, 2005).
-
Dijkstra, H. A. & Ghil, M. Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach. Reviews of Geophysics 43, RG3002 (2005).
Google Scholar
-
Chekroun, M. D., Liu, H. & Wang, S. Approximation of Stochastic Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I (Springer Briefs in Mathematics, 2015).
-
Chekroun, M. D., Liu, H. & Wang, S. Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II (Springer Briefs in Mathematics, 2015).
-
Chekroun, M., Liu, H., McWilliams, J. & Wang, S. Transitions in stochastic non-equilibrium systems: efficient reduction and analysis. J. Differ. Equ. 346, 145–204 (2023).
Google Scholar
-
Wouters, J. & Gottwald, G. A. Edgeworth expansions for slow–fast systems with finite time-scale separation. Proc. R. Soc. A 475, 20180358 (2019).
Google Scholar
-
Wouters, J. & Gottwald, G. A. Stochastic model reduction for slow–fast systems with moderate time scale separation. Multiscale Model. Simul. 17, 1172–1188 (2019).
Google Scholar
-
Pavliotis, G. A. Stochastic Processes and Applications (Springer, 2014).
-
Maher, N., Milinski, S. & Ludwig, R. Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble. Earth Syst. Dyn. 12, 401–418 (2021).
Google Scholar
-
Chekroun, M., Tantet, A., Dijkstra, H. & Neelin, J. D. Ruelle–Pollicott resonances of stochastic systems in reduced state space. Part I: Theory. J. Stat. Phys. 179, 1366–1402 (2020).
Google Scholar
-
Eckmann, J.-P. & Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985).
Google Scholar
-
Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014).
Google Scholar
-
Eyring, V. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0 — an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci. Model Dev. 13, 3383–3438 (2020).
Google Scholar
-
Maier-Reimer, E. & Hasselmann, K. Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Clim. Dyn. 2, 63–90 (1987).
Google Scholar
-
Hasselmann, K., Sausen, R., Maier-Reimer, E. & Voss, R. On the cold start problem in transient simulations with coupled atmosphere–ocean models. Clim. Dyn. 9, 53–61 (1993).
Google Scholar
-
Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966).
Google Scholar
-
Leith, C. Climate response and fluctuation dissipation. J. Atmos. Sci. 32, 2022–2026 (1975).
Google Scholar
-
Tél, T. et al. The theory of parallel climate realizations. J. Stat. Phys. 179, 1496–1530 (2020).
Google Scholar
-
Hannart, A., Ribes, A. & Naveau, P. Optimal fingerprinting under multiple sources of uncertainty. Geophys. Res. Lett. 41, 1261–1268 (2014).
Google Scholar
-
Allen, M. & Tett, S. Checking for model consistency in optimal fingerprinting. Clim. Dyn. 15, 419–434 (1999).
Google Scholar
-
Allen, M. & Tett, S. Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim. Dyn. 21, 477–491 (2003).
Google Scholar
-
Hegerl, G. & Zwiers, F. Use of models in detection and attribution of climate change. Wiley Interdiscip. Rev. Clim. Change 2, 570–591 (2011).
Google Scholar
-
Li, Y., Chen, K., Yan, J. & Zhang, X. Uncertainty in optimal fingerprinting is underestimated. Environ. Res. Lett. 16, 084043 (2021).
Google Scholar
-
McKitrick, R. Checking for model consistency in optimal fingerprinting: a comment. Clim. Dyn. 58, 405–411 (2022).
Google Scholar
-
Chen, H., Chen, S. X. & Mu, M. A review on the optimal fingerprinting approach in climate change studies. Preprint at https://arxiv.org/abs/2205.10508 (2022).
-
Mori, H. Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423–455 (1965).
Google Scholar
-
Zwanzig, R. Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983–992 (1961).
Google Scholar
-
Chorin, A. J., Hald, O. H. & Kupferman, R. Optimal prediction with memory. Phys. D 166, 239–257 (2002).
Google Scholar
-
Givon, D., Kupferman, R. & Stuart, A. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17, R55–R127 (2004).
Google Scholar
-
Lorenz, E. N. Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 1685–1699 (1980).
Google Scholar
-
Chekroun, M. D. & Glatt-Holtz, N. E. Invariant measures for dissipative dynamical systems: abstract results and applications. Commun. Math. Phys. 316, 723–761 (2012).
Google Scholar
-
Budišić, M., Mohr, R. & Mezić, I. Applied Koopmanism. Chaos 22, 047510 (2012).
Google Scholar
-
Ambrosio, L., Gigli, N. & Savaré, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures (Springer, 2008).
-
Chorin, A. & Hald, O. Stochastic Tools in Mathematics and Science (Springer, 2006).
-
Vissio, G. & Lucarini, V. Evaluating a stochastic parametrization for a fast–slow system using the Wasserstein distance. Nonlinear Process. Geophys. 25, 413–427 (2018).
Google Scholar
-
Stinis, P. Higher order Mori–Zwanzig models for the Euler equations. Multiscale Model. Simul. 6, 741–760 (2007).
Google Scholar
-
Li, Z., Bian, X., Li, X. & Karniadakis, G. Incorporation of memory effects in coarse-grained modeling via the Mori–Zwanzig formalism. J. Chem. Phys. 143, 243128 (2015).
Google Scholar
-
Lei, H., Baker, N. & Li, X. Data-driven parameterization of the generalized Langevin equation. Proc. Natl Acad. Sci. USA 113, 14183–14188 (2016).
Google Scholar
-
Li, Z., Lee, H., Darve, E. & Karniadakis, G. Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: application to polymer melts. J. Chem. Phys. 146, 014104 (2017).
Google Scholar
-
Brennan, C. & Venturi, D. Data-driven closures for stochastic dynamical systems. J. Comput. Phys. 372, 281–298 (2018).
Google Scholar
-
Chorin, A. J. & Lu, F. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. Proc. Natl Acad. Sci. USA 112, 9804–9809 (2015).
Google Scholar
-
Lu, F., Lin, K. K. & Chorin, A. J. Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation. Phys. D 340, 46–57 (2017).
Google Scholar
-
Lin, K. K. & Lu, F. Data-driven model reduction, Wiener projections, and the Koopman–Mori–Zwanzig formalism. J. Comput. Phys. 424, 109864 (2021).
Google Scholar
-
Majda, A. J. & Harlim, J. Physics constrained nonlinear regression models for time series. Nonlinearity 26, 201–217 (2013).
Google Scholar
-
Kondrashov, D., Chekroun, M. D. & Ghil, M. Data-driven non-Markovian closure models. Phys. D 297, 33–55 (2015).
Google Scholar
-
Harlim, J., Jiang, S., Liang, S. & Yang, H. Machine learning for prediction with missing dynamics. J. Comput. Phys. 428, 109922 (2021).
Google Scholar
-
Qi, D. & Harlim, J. A data-driven statistical-stochastic surrogate modeling strategy for complex nonlinear non-stationary dynamics. J. Comput. Phys. 485, 112085 (2023).
Google Scholar
-
Gilani, F., Giannakis, D. & Harlim, J. Kernel-based prediction of non-Markovian time series. Phys. D 418, 132829 (2021).
Google Scholar
-
Mori, H. A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys. 34, 399–416 (1965).
Google Scholar
-
Lee, M. Solutions of the generalized Langevin equation by a method of recurrence relations. Phys. Rev. B 26, 2547 (1982).
Google Scholar
-
Florencio Jr, J. & Lee, M. H. Exact time evolution of a classical harmonic-oscillator chain. Phys. Rev. A 31, 3231 (1985).
Google Scholar
-
Kupferman, R. Fractional kinetics in Kac–Zwanzig heat bath models. J. Stat. Phys. 114, 291–326 (2004).
Google Scholar
-
Chorin, A. & Stinis, P. Problem reduction, renormalization, and memory. Commun. Appl. Math. Comp. Sci. 1, 1–27 (2007).
Google Scholar
-
Stinis, P. A comparative study of two stochastic mode reduction methods. Phys. D 213, 197–213 (2006).
Google Scholar
-
Götze, W. Recent tests of the mode-coupling theory for glassy dynamics. J. Phys. Condens. Matter 11, A1 (1999).
Google Scholar
-
Reichman, D. & Charbonneau, P. Mode-coupling theory. J. Stat. Mech. Theory Exp. 2005, P05013 (2005).
Google Scholar
-
Darve, E., Solomon, J. & Kia, A. Computing generalized Langevin equations and generalized Fokker–Planck equations. Proc. Natl Acad. Sci. USA 106, 10884–10889 (2009).
Google Scholar
-
Chen, M., Li, X. & Liu, C. Computation of the memory functions in the generalized Langevin models for collective dynamics of macromolecules. J. Chem. Phys. 141, 064112 (2014).
Google Scholar
-
Stinis, P. Renormalized Mori–Zwanzig-reduced models for systems without scale separation. Proc. R. Soc. A 471, 20140446 (2015).
Google Scholar
-
Parish, E. & Duraisamy, K. Non-Markovian closure models for large eddy simulations using the Mori–Zwanzig formalism. Phys. Rev. Fluids 2, 014604 (2017).
Google Scholar
-
Parish, E. J. & Duraisamy, K. A dynamic subgrid scale model for large eddy simulations based on the Mori–Zwanzig formalism. J. Comput. Phys. 349, 154–175 (2017).
Google Scholar
-
Zhu, Y., Dominy, J. & Venturi, D. On the estimation of the Mori–Zwanzig memory integral. J. Math. Phys. 59, 103501 (2018).
Google Scholar
-
Zhu, Y. & Venturi, D. Faber approximation of the Mori–Zwanzig equation. J. Comput. Phys. 372, 694–718 (2018).
Google Scholar
-
Venturi, D. & Karniadakis, G. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems. Proc. R. Soc. A 470, 20130754 (2014).
Google Scholar
-
Wouters, J. & Lucarini, V. Disentangling multi-level systems: averaging, correlations and memory. J. Stat. Mech. 2012, P03003 (2012).
Google Scholar
-
Wouters, J. & Lucarini, V. Multi-level dynamical systems: connecting the Ruelle response theory and the Mori–Zwanzig approach. J. Stat. Phys. 151, 850–860 (2013).
Google Scholar
-
Yoshimoto, Y. et al. Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics. Phys. Rev. E 88, 043305 (2013).
Google Scholar
-
Hijón, C., Español, P., Vanden-Eijnden, E. & Delgado-Buscalioni, R. Mori–Zwanzig formalism as a practical computational tool. Faraday Discuss. 144, 301–322 (2010).
Google Scholar
-
Demaeyer, J. & Vannitsem, S. Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model. Nonlinear Process. Geophys. 25, 605–631 (2018).
Google Scholar
-
Vissio, G. & Lucarini, V. A proof of concept for scale-adaptive parametrizations: the case of the Lorenz ’96 model. Q. J. R. Meteorol. Soc. 144, 63–75 (2018).
Google Scholar
-
Hald, O. H. & Stinis, P. Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions. Proc. Natl Acad. Sci. USA 104, 6527–6532 (2007).
Google Scholar
-
Chekroun, M. D., Di Plinio, F., Glatt-Holtz, N. E. & Pata, V. Asymptotics of the Coleman–Gurtin model. Discrete Contin. Dyn. Syst. Ser. S 4, 351–369 (2011).
Google Scholar
-
Kravtsov, S., Kondrashov, D. & Ghil, M. Multilevel regression modeling of nonlinear processes: derivation and applications to climatic variability. J. Clim. 18, 4404–4424 (2005).
Google Scholar
-
Chekroun, M. D., Liu, H. & McWilliams, J. C. Variational approach to closure of nonlinear dynamical systems: autonomous case. J. Stat. Phys. 179, 1073–1160 (2020).
Google Scholar
-
Ma, C., Wang, J. & E, W. Model reduction with memory and the machine learning of dynamical systems. Commun. Comput. Phys. 25, 947–962 (2019).
Google Scholar
-
Arnold, V. I. Geometrical Methods in the Theory of Ordinary Differential Equations 2nd edn (Springer, 1988).
-
Chekroun, M. D., Liu, H. & McWilliams, J. C. Optimal parameterizing manifolds for anticipating tipping points and higher-order critical transitions. Preprint at https://arxiv.org/abs/2307.06537 (2023).
-
Debussche, A. & Temam, R. Inertial manifolds and the slow manifolds in meteorology. Differ. Integral Equ. 4, 897–931 (1991).
Google Scholar
-
Temam, R. & Wirosoetisno, D. Slow manifolds and invariant sets of the primitive equations. J. Atmos. Sci. 68, 675–682 (2011).
Google Scholar
-
Zelik, S. Inertial manifolds and finite-dimensional reduction for dissipative PDEs. Proc. R. Soc. Edinb. A 144, 1245–1327 (2014).
Google Scholar
-
Kraichnan, R. H. Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521–1536 (1976).
Google Scholar
-
Leith, C. E. Stochastic backscatter in a subgrid-scale model: plane shear mixing layer. Phys. Fluids A 2, 297–299 (1990).
Google Scholar
-
Debussche, A., Dubois, T. & Temam, R. The nonlinear Galerkin method: a multiscale method applied to the simulation of homogeneous turbulent flows. Theor. Comput. Fluid Dyn. 7, 279–315 (1995).
Google Scholar
-
Dubois, T., Jauberteau, F. & Temam, R. Incremental unknowns, multilevel methods and the numerical simulation of turbulence. Comput. Methods Appl. Mech. Eng. 159, 123–189 (1998).
Google Scholar
-
Dubois, T. & Jauberteau, F. A dynamic multilevel model for the simulation of the small structures in homogeneous isotropic turbulence. J. Sci. Comput. 13, 323–367 (1998).
Google Scholar
-
Fu, X., Chang, L.-B. & Xiu, D. Learning reduced systems via deep neural networks with memory. J. Machine Learn. Model. Comput. 1, 97–118 (2020).
Google Scholar
-
Wang, Q., Ripamonti, N. & Hesthaven, J. S. Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori–Zwanzig formalism. J. Comput. Phys. 410, 109402 (2020).
Google Scholar
-
Gupta, A. & Lermusiaux, P. F. J. Neural closure models for dynamical systems. Proc. R. Soc. A 477, 20201004 (2021).
Google Scholar
-
Kraichnan, R. H. Eddy viscosity and diffusivity: exact formulas and approximations. Complex Syst. 1, 805–820 (1987).
Google Scholar
-
Rose, H. A. Eddy diffusivity, eddy noise and subgrid-scale modelling. J. Fluid Mech. 81, 719–734 (1977).
Google Scholar
-
Kondrashov, D., Kravtsov, S., Robertson, A. W. & Ghil, M. A hierarchy of data-based ENSO models. J. Clim. 18, 4425–4444 (2005).
Google Scholar
-
Chekroun, M. D., Kondrashov, D. & Ghil, M. Predicting stochastic systems by noise sampling, and application to the El Niño–Southern Oscillation. Proc. Natl Acad. Sci. USA 108, 11766–11771 (2011).
Google Scholar
-
Chen, C. et al. Diversity, nonlinearity, seasonality, and memory effect in ENSO simulation and prediction using empirical model reduction. J. Clim. 29, 1809–1830 (2016).
Google Scholar
-
Kondrashov, D., Kravtsov, S. & Ghil, M. Empirical mode reduction in a model of extratropical low-frequency variability. J. Atmos. Sci. 63, 1859–1877 (2006).
Google Scholar
-
Boers, N. et al. Inverse stochastic-dynamic models for high-resolution Greenland ice-core records. Earth Syst. Dyn. 8, 1171–1190 (2017).
Google Scholar
-
Kondrashov, D., Chekroun, M. D., Robertson, A. W. & Ghil, M. Low-order stochastic model and ‘past-noise forecasting’ of the Madden–Julian oscillation. Geophys. Res. Lett. 40, 5305–5310 (2013).
Google Scholar
-
Chen, N., Majda, A. J. & Giannakis, D. Predicting the cloud patterns of the Madden–Julian oscillation through a low-order nonlinear stochastic model. Geophys. Res. Lett. 41, 5612–5619 (2014).
Google Scholar
-
Chen, N. & Majda, A. J. Predicting the real-time multivariate Madden–Julian oscillation index through a low-order nonlinear stochastic model. Mon. Weather Rev. 143, 2148–2169 (2015).
Google Scholar
-
Santos Gutiérrez, M., Lucarini, V., Chekroun, M. D. & Ghil, M. Reduced-order models for coupled dynamical systems: data-driven methods and the Koopman operator. Chaos 31, 053116 (2021).
Google Scholar
-
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009).
Google Scholar
-
Schmid, P. J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010).
Google Scholar
-
Kutz, J., Brunton, S., Brunton, B. & Proctor, J. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (Society for Industrial and Applied Mathematics, 2016).
-
Hasselmann, K. PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res. 93, 11015–11021 (1988).
Google Scholar
-
Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. & Kutz, J. N. On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1, 391–421 (2014).
Google Scholar
-
Chekroun, M. D., Liu, H. & McWilliams, J. C. The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories. Comput. Fluids 151, 3–22 (2017).
Google Scholar
-
Leith, C. Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958–968 (1980).
Google Scholar
-
Bolin, B. Numerical forecasting with the barotropic model. Tellus 7, 27–49 (1955).
Google Scholar
-
Baer, F. & Tribbia, J. J. On complete filtering of gravity modes through nonlinear initialization. Mon. Weather Rev. 105, 1536–1539 (1977).
Google Scholar
-
Machenhauer, B. On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Beitr. Phys. Atmos 50, 253–271 (1977).
Google Scholar
-
Daley, R. Normal mode initialization. Rev. Geophys. 19, 450–468 (1981).
Google Scholar
-
Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).
Google Scholar
-
Chekroun, M., Liu, H. & McWilliams, J. C. The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories. Comput. Fluids 151, 3–22 (2017).
Google Scholar
-
Plougonven, R. & Snyder, C. Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci. 64, 2502–2520 (2007).
Google Scholar
-
Polichtchouk, I. & Scott, R. Spontaneous inertia-gravity wave emission from a nonlinear critical layer in the stratosphere. Q. J. R. Meteorol. Soc. 146, 1516–1528 (2020).
Google Scholar
-
Tulich, S., Randall, D. & Mapes, B. Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci. 64, 1210–1229 (2007).
Google Scholar
-
Lane, T. P. Convectively generated gravity waves. In Encyclopedia of Atmospheric Sciences 2nd edition, 171–179 (Elsevier, 2015).
-
Dror, T., Chekroun, M. D., Altaratz, O. & Koren, I. Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens. Atmos. Chem. Phys. 21, 12261–12272 (2021).
Google Scholar
-
Chekroun, M., Liu, H. & McWilliams, J. Stochastic rectification of fast oscillations on slow manifold closures. Proc. Natl Acad. Sci. USA 118, e2113650118 (2021).
Google Scholar
-
McWilliams, J. & Gent, P. Intermediate models of planetary circulations in the atmosphere and ocean. J. Atmos. Sci. 37, 1657–1678 (1980).
Google Scholar
-
Gent, P. R. & McWilliams, J. C. Intermediate model solutions to the Lorenz equations: strange attractors and other phenomena. J. Atmos. Sci. 39, 3–13 (1982).
Google Scholar
-
Monin, A. Change of pressure in a barotropic atmosphere. Akad. Nauk. Izv. Ser. Geofiz. 4, 76–85 (1952).
-
Charney, J. The use of the primitive equations of motion in numerical prediction. Tellus 7, 22–26 (1955).
Google Scholar
-
Lorenz, E. Energy and numerical weather prediction. Tellus 12, 364–373 (1960).
Google Scholar
-
Chekroun, M. D. & Kondrashov, D. Data-adaptive harmonic spectra and multilayer Stuart–Landau models. Chaos 27, 093110 (2017).
Google Scholar
-
Zhen, Y., Chapron, B., Mémin, E. & Peng, L. Eigenvalues of autocovariance matrix: a practical method to identify the Koopman eigenfrequencies. Phys. Rev. E 105, 034205 (2022).
Google Scholar
-
Tantet, A., Chekroun, M., Dijkstra, H. & Neelin, J. D. Ruelle–Pollicott resonances of stochastic systems in reduced state space. Part II: stochastic Hopf bifurcation. J. Stat. Phys. 179, 1403–1448 (2020).
Google Scholar
-
Mémin, E. Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn. 108, 119–146 (2014).
Google Scholar
-
Holm, D. D. Variational principles for stochastic fluid dynamics. Proc. R. Soc. A 471, 20140963 (2015).
Google Scholar
-
Cotter, C., Crisan, D., Holm, D. D., Pan, W. & Shevchenko, I. Numerically modeling stochastic lie transport in fluid dynamics. Multiscale Model. Simul. 17, 192–232 (2019).
Google Scholar
-
Resseguier, V., Mémin, E. & Chapron, B. Geophysical flows under location uncertainty, Part I: random transport and general models. Geophys. Astrophys. Fluid Dyn. 111, 149–176 (2017).
Google Scholar
-
Simonnet, E., Ghil, M., Ide, K., Temam, R. & Wang, S. Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: time-dependent solutions. J. Phys. Oceanogr. 33, 729–752 (2003).
Google Scholar
-
Rocha, C. B., Chereskin, T. K., Gille, S. T. & Menemenlis, D. Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr. 46, 601–620 (2016).
Google Scholar
-
Young, W. R. Inertia-gravity waves and geostrophic turbulence. J. Fluid Mech. 920, F1 (2021).
Google Scholar
-
Bolton, T. & Zanna, L. Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst. 11, 376–399 (2019).
Google Scholar
-
Maulik, R., San, O., Rasheed, A. & Vedula, P. Subgrid modelling for two-dimensional turbulence using neural networks. J. Fluid Mech. 858, 122–144 (2019).
Google Scholar
-
Kochkov, D. et al. Machine learning–accelerated computational fluid dynamics. Proc. Natl Acad. Sci. USA 118, e2101784118 (2021).
Google Scholar
-
Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale closures. Geophys. Res. Lett. 47, e2020GL088376 (2020).
Google Scholar
-
Subel, A., Guan, Y., Chattopadhyay, A. & Hassanzadeh, P. Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow. Preprint at https://doi.org/10.48550/arXiv.2206.03198 (2022).
-
Srinivasan, K., Chekroun, M. D. & McWilliams, J. C. Turbulence closure with small, local neural networks: Forced two-dimensional and β-plane flows. Preprint at https://doi.org/10.48550/arXiv.2304.05029 (2023).
-
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
-
Piomelli, U., Cabot, W. H., Moin, P. & Lee, S. Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3, 1766–1771 (1991).
Google Scholar
-
Jansen, M. F. & Held, I. M. Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 36–48 (2014).
Google Scholar
-
Miyanawala, T. P. & Jaiman, R. K. An efficient deep learning technique for the Navier–Stokes equations: application to unsteady wake flow dynamics. Preprint at https://arxiv.org/abs/1710.09099 (2017).
-
Foias, C., Manley, O. & Temam, R. Modeling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22, 93–118 (1988).
Google Scholar
-
Foias, C., Manley, O. P. & Temam, R. Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 3, 898–911 (1991).
Google Scholar
-
Pascal, F. & Basdevant, C. Nonlinear Galerkin method and subgrid-scale model for two-dimensional turbulent flows. Theor. Comput. Fluid Dyn. 3, 267–284 (1992).
Google Scholar
-
Lorenz, E. N. Empirical Orthogonal Functions and Statistical Weather Prediction. Scientific Report no. 1, Statistical Forecasting Project (1956).
-
Jolliffe, I. Principal Component Analysis (Wiley Online Library, 2002).
-
Penland, C. Random forcing and forecasting using principal oscillation pattern analysis. Mon. Weath. Rev. 117, 2165–2185 (1989).
Google Scholar
-
Penland, C. & Magorian, T. Prediction of Niño-3 sea surface temperatures using iinear inverse modeling 6, 1067–1076 (1993).
-
Penland, C. & Ghil, M. Forecasting Northern Hemisphere 700-mb geopotential height anomalies using empirical normal modes. Mon. Weather Rev. 121, 2355–2372 (1993).
Google Scholar
-
Penland, C. & Sardeshmukh, P. D. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8, 1999–2024 (1995).
Google Scholar
-
Franzke, C., Majda, A. J. & Vanden-Eijnden, E. Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci. 62, 1722–1745 (2005).
Google Scholar
-
Franzke, C. & Majda, A. J. Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci. 63, 457–479 (2006).
Google Scholar
-
Schölkopf, B., Smola, A. & Müller, K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural comput. 10, 1299–1319 (1998).
Google Scholar
-
Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E. & Kurths, J. Principal nonlinear dynamical modes of climate variability. Sci. Rep.5 (2015).
-
Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. J. R. Stat. Soc. B 61, 611–622 (1999).
Google Scholar
-
Schmidt, O., Mengaldo, G., Balsamo, G. & Wedi, N. Spectral empirical orthogonal function analysis of weather and climate data. Mon. Weather Rev. 147, 2979–2995 (2019).
Google Scholar
-
Zerenner, T., Goodfellow, M. & Ashwin, P. Harmonic cross-correlation decomposition for multivariate time series. Phys. Rev. E 103, 062213 (2021).
Google Scholar
-
Das, S. & Giannakis, D. Delay-coordinate maps and the spectra of Koopman operators. J. Stat. Phys. 175, 1107–1145 (2019).
Google Scholar
-
Froyland, G., Giannakis, D., Lintner, B. R., Pike, M. & Slawinska, J. Spectral analysis of climate dynamics with operator-theoretic approaches. Nat. Commun. 12, 6570 (2021).
Google Scholar
-
Belkin, M. & Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003).
Google Scholar
-
Coifman, R. & Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006).
Google Scholar
-
Giannakis, D. & Majda, A. J. Nonlinear Laplacian spectral analysis: capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data. Stat. Anal. Data Min. ASA Data Sci. J. 6, 180–194 (2013).
Google Scholar
-
Kingma, D. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2013).
-
Berloff, P. Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model. Ocean Model. 87, 1–19 (2015).
Google Scholar
-
Kondrashov, D., Chekroun, M. & Berloff, P. Multiscale Stuart–Landau emulators: application to wind-driven ocean gyres. Fluids 3, 21 (2018).
Google Scholar
-
Rahaman, N. et al. On the spectral bias of neural networks. In International Conference on Machine Learning, 5301–5310 (PMLR, 2019).
-
Ghil, M. et al. Advanced spectral methods for climatic time series. Rev. Geophys. 40, 1003 (2002).
Google Scholar
-
Kondrashov, D., Chekroun, M. D., Yuan, X. & Ghil, M. in Advances in Nonlinear Geosciences (ed. Tsonis, A.) 179–205 (Springer, 2018).
-
Kondrashov, D., Chekroun, M. D. & Ghil, M. Data-adaptive harmonic decomposition and prediction of Arctic sea ice extent. Dyn. Stat. Clim. Syst. https://doi.org/10.1093/climsys/dzy001 (2018).
-
Landau, L. & Lifshitz, E. M. Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Vol. 6 (Elsevier, 2013).
-
Ruelle, D. & Takens, F. On the nature of turbulence. Commun. Math. Phys 20, 167–192 (1971).
Google Scholar
-
Chekroun, M. D., Simonnet, E. & Ghil, M. Stochastic climate dynamics: random attractors and time-dependent invariant measures. Phys. D 240, 1685–1700 (2011).
Google Scholar
-
Carvalho, A. N., Langa, J. A. & Robinson, J. C. Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems (Springer, 2013).
-
Tél, T. et al. The theory of parallel climate realizations. J. Stat. Phys. https://doi.org/10.1007/s10955-019-02445-7 (2019).
-
Pierini, S. Statistical significance of small ensembles of simulations and detection of the internal climate variability: an excitable ocean system case study. J. Stat. Phys. 179, 1475–1495 (2020).
Google Scholar
-
Lucarini, V. Response operators for Markov processes in a finite state space: radius of convergence and link to the response theory for axiom A systems. J. Stat. Phys. 162, 312–333 (2016).
Google Scholar
-
Santos Gutiérrez, M. & Lucarini, V. Response and sensitivity using Markov chains. J. Stat. Phys. 179, 1572–1593 (2020).
Google Scholar
-
Hassanzadeh, P. & Kuang, Z. The linear response function of an idealized atmosphere. Part I: Construction using Green’s functions and applications. J. Atmos. Sci. 73, 3423–3439 (2016).
Google Scholar
-
Abramov, R. V. & Majda, A. J. Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity 20, 2793 (2007).
Google Scholar
-
North, G. R., Bell, R. E. & Hardin, J. W. Fluctuation dissipation in a general circulation model. Clim. Dyn. 8, 259–264 (1993).
Google Scholar
-
Cionni, I., Visconti, G. & Sassi, F. Fluctuation dissipation theorem in a general circulation model. Geophys. Res. Lett.31 (2004).
-
Langen, P. L. & Alexeev, V. A. Estimating 2 × CO2 warming in an aquaplanet GCM using the fluctuation-dissipation theorem. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024136 (2005).
-
Gritsun, A. & Branstator, G. Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem. J. Atmos. Sci. 64, 2558–2575 (2007).
Google Scholar
-
Hassanzadeh, P. & Kuang, Z. The linear response function of an idealized atmosphere. Part II: Implications for the practical use of the fluctuation–dissipation theorem and the role of operator’s nonnormality. J. Atmos. Sci. 73, 3441–3452 (2016).
-
Gritsun, A. & Lucarini, V. Fluctuations, response, and resonances in a simple atmospheric model. Phys. D 349, 62–76 (2017).
Google Scholar
-
Dijkstra, H. A. & Ghil, M. Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach. Rev. Geophys. https://doi.org/10.1029/2002RG000122 (2005).
-
Kuhlbrodt, T. et al. On the driving processes of the Atlantic Meridional Overturning Circulation. Rev. Geophys. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004RG000166 (2007).
-
Lucarini, V. Revising and extending the linear response theory for statistical mechanical systems: evaluating observables as predictors and predictands. J. Stat. Phys. 173, 1698–1721 (2018).
Google Scholar
-
Tomasini, U. M. & Lucarini, V. Predictors and predictands of linear response in spatially extended systems. Eur. Phys. J.: Spec. Top. 230, 2813–2832 (2021).
-
Antown, F., Dragičević, D. & Froyland, G. Optimal linear responses for Markov chains and stochastically perturbed dynamical systems. J. Stat. Phys. 170, 1051–1087 (2018).
Google Scholar
-
Antown, F., Froyland, G. & Galatolo, S. Optimal linear response for Markov Hilbert–Schmidt integral operators and stochastic dynamical systems. J. Nonlinear Sci. 32, 79 (2022).
Google Scholar
-
Chekroun, M. D., Kröner, A. & Liu, H. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces. Electron. J. Differ. Equ. 189, 1–40 (2017).
Google Scholar
-
Bódai, T., Lucarini, V. & Lunkeit, F. Can we use linear response theory to assess geoengineering strategies? Chaos: Interdiscip. J. Nonlinear Sci. 30, 023124 (2020).
Google Scholar
-
Tantet, A., Lucarini, V. & Dijkstra, H. A. Resonances in a chaotic attractor crisis of the Lorenz flow. J. Stat. Phys. 170, 584–616 (2018).
Google Scholar
-
Engel, K.-J. & Nagel, R. One-Parameter Semigroups for Linear Evolution Equations (Springer, 2000).
-
Williams, M., Kevrekidis, I. & Rowley, C. A data–driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 1307–1346 (2015).
Google Scholar
-
Navarra, A. A new set of orthonormal modes for linearized meteorological problems. J. Atmos. Sci. 50, 2569–2583 (1993).
Google Scholar
-
Palmer, T. N. A nonlinear dynamical perspective on climate prediction. J. Clim. 12, 575–591 (1999).
Google Scholar
-
Lu, J., Liu, F., Leung, L. R. & Lei, H. Neutral modes of surface temperature and the optimal ocean thermal forcing for global cooling. NPJ Clim. Atmos. Sci. 3, 9 (2020).
Google Scholar
-
Chekroun, M. D., Neelin, J. D., Kondrashov, D., McWilliams, J. C. & Ghil, M. Rough parameter dependence in climate models: the role of Ruelle-Pollicott resonances. Proc. Natl Acad. Sci. USA 111, 1684–1690 (2014).
Google Scholar
-
Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020972 (2004).
-
Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
Google Scholar
-
Boettner, C. & Boers, N. Critical slowing down in dynamical systems driven by nonstationary correlated noise. Phys. Rev. Res. 4, 013230 (2022).
Google Scholar
-
Lucarini, V. Stochastic perturbations to dynamical systems: a response theory approach. J. Stat. Phys. 146, 774–786 (2012).
Google Scholar
-
Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995).
Google Scholar
-
Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).
Google Scholar
-
Tantet, A., Chekroun, M., Neelin, J. & Dijkstra, H. Ruelle–Pollicott resonances of stochastic systems in reduced state space. Part III: Application to the Cane–Zebiak model of the El Niño–Southern Oscillation. J. Stat. Phys. 179, 1449–1474 (2020).
Google Scholar
-
Lucarini, V., Kuna, T., Faranda, D. & Wouters, J. Towards a general theory of extremes for observables of chaotic dynamical systems. J. Stat. Phys. 154, 723–750 (2014).
-
Naveau, P., Hannart, A. & Ribes, A. Statistical methods for extreme event attribution in climate science. Annu. Rev. Stat. Appl. 7, 89–110 (2020).
Google Scholar
-
Wang, Z., Jiang, Y., Wan, H., Yan, J. & Zhang, X. Toward optimal fingerprinting in detection and attribution of changes in climate extremes. J. Am. Stat. Assoc. 116, 1–13 (2021).
Google Scholar
-
Stein, U. & Alpert, P. Factor separation in numerical simulations. J. Atmos. Sci. 50, 2107–2115 (1993).
Google Scholar
-
Hossain, A. et al. The impact of different atmospheric CO2 concentrations on large scale Miocene temperature signatures. Paleoceanogr. Paleoclimatol. 38, e2022PA004438 (2023).
Google Scholar
-
Ruelle, D. Nonequilibrium statistical mechanics near equilibrium: computing higher-order terms. Nonlinearity 11, 5–18 (1998).
Google Scholar
-
Chekroun, M. D., Ghil, M. & Neelin, J. D. in Advances in Nonlinear Geosciences (ed. Tsonis, A.), 1–33 (Springer, 2018).
-
Chekroun, M. D., Koren, I., Liu, H. & Liu, H. Generic generation of noise-driven chaos in stochastic time delay systems: bridging the gap with high-end simulations. Sci. Adv. 8, eabq7137 (2022).
Google Scholar
-
Benzi, R., Sutera, A. & Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A 14, L453–L457 (1981).
Google Scholar
-
Nicolis, C. Solar variability and stochastic effects on climate. Sol. Phys. 74, 473–478 (1981).
Google Scholar
-
Benzi, R., Parisi, G., Sutera, A. & Vulpiani, A. Stochastic resonance in climatic change. Tellus 34, 10–16 (1982).
Google Scholar
-
Nicolis, C. Stochastic aspects of climatic transitions — response to a periodic forcing. Tellus 34, 308–308 (1982).
Google Scholar
-
Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998).
Google Scholar
-
Charney, J. G. & DeVore, J. G. Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 1205–1216 (1979).
Google Scholar
-
Benzi, R., Malguzzi, P., Speranza, A. & Sutera, A. The statistical properties of general atmospheric circulation: observational evidence and a minimal theory of bimodality. Q. J. R. Meteorol. Soc. 112, 661–674 (1986).
Google Scholar
-
Benzi, R. & Speranza, A. Statistical properties of low-frequency variability in the Northern Hemisphere. J. Clim. 2, 367–379 (1989).
Google Scholar
-
Kimoto, M. & Ghil, M. Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci. 50, 2625–2643 (1993a).
Google Scholar
-
Itoh, H. & Kimoto, M. Multiple attractors and chaotic itinerancy in a quasigeostrophic model with realistic topography: implications for weather regimes and low-frequency variability. J. Atmos. Sci. 53, 2217–2231 (1996).
Google Scholar
-
Arnscheidt, C. W. & Rothman, D. H. The balance of nature: a global marine perspective. Ann. Rev. Mar. Sci. 14, 49–73 (2022).
Google Scholar
-
Freidlin, M. I. & Wentzell, A. D. Random Perturbations of Dynamical Systems (Springer, 1998).
-
Touchette, H. The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009).
Google Scholar
-
Bouchet, F. & Venaille, A. Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227–295 (2012).
Google Scholar
-
Herbert, C. An Introduction to Large Deviations and Equilibrium Statistical Mechanics for Turbulent Flows, 53–84 (Springer International Publishing, 2015).
-
Lucarini, V. & Bódai, T. Transitions across melancholia states in a climate model: reconciling the deterministic and stochastic points of view. Phys. Rev. Lett. 122, 158701 (2019).
Google Scholar
-
Lucarini, V. & Bódai, T. Global stability properties of the climate: melancholia states, invariant measures, and phase transitions. Nonlinearity 33, R59–R92 (2020).
Google Scholar
-
Margazoglou, G., Grafke, T., Laio, A. & Lucarini, V. Dynamical landscape and multistability of a climate model. Proc. R. Soc. A 477, 20210019 (2021).
Google Scholar
-
Rousseau, D.-D., Bagniewski, W. & Lucarini, V. A punctuated equilibrium analysis of the climate evolution of Cenozoic exhibits a hierarchy of abrupt transitions. Sci. Rep. 13, 11290 (2023).
Google Scholar
-
Ditlevsen, P. D. Observation of α-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett. 26, 1441–1444 (1999).
Google Scholar
-
Penland, C. & Ewald, B. D. On modelling physical systems with stochastic models: diffusion versus Lévy processes. Phil. Trans. Roy. Soc. A 366, 2455–2474 (2008).
Google Scholar
-
Gottwald, G. A. A model for Dansgaard–Oeschger events and millennial-scale abrupt climate change without external forcing. Clim. Dyn. 56, 227–243 (2021).
Google Scholar
-
Lucarini, V., Serdukova, L. & Margazoglou, G. Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model. Nonlinear Process. Geophys. 29, 183–205 (2022).
Google Scholar
-
Berloff, P. Dynamically consistent parameterization of mesoscale eddies — Part II: Eddy fluxes and diffusivity from transient impulses. Fluids https://doi.org/10.3390/fluids1030022 (2016).
-
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
Google Scholar
-
Saltzman, B. Dynamical Paleoclimatology: Generalized Theory of Global Climate Change (Academic, 2001).
-
Miyadera, I. On perturbation theory for semi-groups of operators. Tohoku Math. J. Second Ser. 18, 299–310 (1966).
Google Scholar
-
Voigt, J. On the perturbation theory for strongly continuous semigroups. Math. Ann. 229, 163–171 (1977).
Google Scholar
-
Givon, D., Kupferman, R. & Hald, O. Existence proof for orthogonal dynamics and the Mori–Zwanzig formalism. Isr. J. Math. 145, 221–241 (2005).
Google Scholar
-
McWilliams, J. C. A perspective on the legacy of Edward Lorenz. Earth Space Sci. 6, 336–350 (2019).
Google Scholar
-
Lorenz, E. On the existence of a slow manifold. J. Atmos. Sci. 43, 1547–1558 (1986).
Google Scholar
-
Lorenz, E. N. & Krishnamurthy, V. On the nonexistence of a slow manifold. J. Atmos. Sci. 44, 2940–2950 (1987).
Google Scholar
-
Vanneste, J. Exponential smallness of inertia–gravity wave generation at small Rossby number. J. Atmos. Sci. 65, 1622–1637 (2008).
Google Scholar
-
Vanneste, J. Balance and spontaneous wave generation in geophysical flows. Ann. Rev. Fluid Mech. 45, 147–172 (2013).
Google Scholar
-
IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) (Cambridge Univ. Press, 2014).
-
Otto, A. et al. Energy budget constraints on climate response. Nat. Geosci. 6, 415–416 (2013).
Google Scholar
-
Hilborn, R. C. Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50, 982–986 (1982).
Google Scholar
-
Lucarini, V., Saarinen, J. J., Peiponen, K.-E. & Vartiainen, E. M. Kramers–Kronig Relations in Optical Materials Research (Springer, 2005).
Acknowledgements
V.L. acknowledges support received from the European Union (EU) Horizon 2020 research and innovation programme through the projects TiPES (grant agreement no. 820970) and CriticalEarth (grant agreement no. 956170) and by the EPSRC through grant EP/T018178/1. M.D.C. acknowledges the European Research Council under the EU Horizon 2020 research and innovation programme (grant no. 810370) and the Ben May Center grant for theoretical and/or computational research. This work has been also partially supported by the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) grant N00014-20-1-2023. Finally, the authors thank many close collaborators over the years without whom this review would have not been possible: O. Altaratz, P. Ashwin, P. Berloff, R. Blender, T. Bódai, N. Boers, H. Dijkstra, T. Dror, B. Dubrulle, D. Faranda, K. Fraedrich, V. M. Gálfi, G. Gallavotti, N. Glatt-Holtz, G. Gottwald, A. Gritsun, A. von der Heydt, D. Kondrashov, I. Koren, S. Kravtsov, T. Kuna, J. Kurths, H. Liu, F. Lunkeit, D. Neelin, G. Pavliotis, C. Penland, F. Ragone, L. Roques, J. Roux, M. Santos Gutiérrez, S. Schubert, E. Simonnet, A. Speranza, K. Srinivisan, A. Tantet, T. Tél, S. Vannitsem, S. Wang, J. Wouters, N. Zagli, and I. Zaliapin, with special gratitude to A. Chorin, M. Ghil, J. C. McWilliams, D. Ruelle and R. Temam for their guidance and inspirational works.
Author information
Authors and Affiliations
Contributions
Both authors contributed to all aspects of this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous referees for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
About this article
Cite this article
Lucarini, V., Chekroun, M.D. Theoretical tools for understanding the climate crisis from Hasselmann’s programme and beyond.
Nat Rev Phys (2023). https://doi.org/10.1038/s42254-023-00650-8
-
Accepted: 07 September 2023
-
Published: 02 November 2023
-
DOI: https://doi.org/10.1038/s42254-023-00650-8