Dalal PK, Agarwal M. Postmenopausal syndrome. Indian J Psychiat. 2015 Jul;57(Suppl 2):S222–32. https://doi.org/10.4103/0019-5545.161483.
Google Scholar
Santoro N, Randolph JF Jr. Reproductive hormones and the menopause transition. Obstet Gynecol Clin N Am. 2011;38(3):455–66. https://doi.org/10.1016/j.ogc.2011.05.004.
Google Scholar
Iriti M, Varoni EM, Vitalini S. Healthy diets and modifiable risk factors for non-communicable diseases-the European perspective. Foods. 2020;9(7):940. https://doi.org/10.3390/foods9070940.
Google Scholar
Silva TR, Spritzer PM. Skeletal muscle mass is associated with higher dietary protein intake and lower body fat in postmeno- pausal women: a cross-sectional study. Menopause. 2017;24(502–9):9.
Group DVDIPAoRT. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials in US and Europe. BMJ. 2010;340:b5463.
Google Scholar
US Department of Health and Human Services; US Department of Agriculture. Dietary Guidelines for Americans: 2015-2020. 8th ed. December 2015. Accessed January 2, 2020
U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans: 2015–2020 (8th ed.). 2015. Retrieved January 2, 2020
Panizza CE, Shvetsov YB, Harmon BE, Wilkens LR, Le Marchand L, Haiman C, Reedy J, Boushey CJ. Testing the predictive validity of the healthy eating index-2015 in the multiethnic cohort: is the score associated with a reduced risk of all-cause and cause- specific mortality? Nutrients. 2018;10
Reedy J, Lerman JL, Krebs-Smith SM, Kirkpatrick SI, Pannucci TE, Wilson MM, Subar AF, Kahle LL, Tooze JA. Evaluation of the healthy eating index-2015. J Acad Nutr Diet. 2018;118:1622–33.
Google Scholar
Movassagh EZ, Vatanparast H. Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr. 2017;8(1):1–16.
Google Scholar
Fan Y, Ni S, Zhang H. Association between healthy eating Index-2015 total and component food scores with osteoporosis in middle-aged and older Americans: a cross-sectional study with US National Health and nutrition examination survey. Osteoporos Int. 2022;33(4):921–9.
Google Scholar
Babazadeh-Anvigh B, Abedi V, Heydari S, Karamati D, Babajafari S, Najafi A, Karamati M. Healthy eating index-2015 and bone mineral density among adult Iranian women. Arch Osteoporos. 2020;15(1):1–11.
Google Scholar
Hamidi M, Tarasuk V, Corey P, Cheung AM. Association between the healthy eating index and bone turnover markers in US postmenopausal women aged≥ 45 y. Am J Clin Nutr. 2011;94(1):199–208.
Google Scholar
American Bone Health. Dietary Guidelines for Bone Health. https://americanbonehealth.org/nutrition/dietary-guidelines-for-bone- health. Accessed 17 June 2020.
Zeng F, Xue W, Cao W, Wu B, Xie H, Fan F, Zhu H, Chen Y. Diet-quality scores and risk of hip fractures in elderly urban Chinese in Guangdong, China: a case–control study. Osteoporos Int. 2014;25:2131–41.
Google Scholar
Rathod AD, Bharadwaj AS, Badheka AO, Kizilbash M, Afonso L. Healthy eating index and mortality in a nationally representative elderly cohort. Arch Intern Med. 2012;172:275–7.
Google Scholar
Hai S, Wang H, Cao L, Liu P, Zhou J, Yang Y, et al. Association between sarcopenia with lifestyle and family function among community-dwell- ing Chinese aged 60 years and older. BMC Geriatr. 2017;17:1–7.
Google Scholar
Poustchi H, Eghtesad S, Kamangar F, Etemadi A, Keshtkar AA, Hekmatdoost A, Mohammadi Z, Mahmoudi Z, Shayanrad A, Roozafzai F, Sheikh M. Prospective epidemiological research studies in Iran (the PERSIAN cohort study): rationale, objectives, and design. Am J Epidemiol. 2018;187(4):647–55.
Google Scholar
Pasdar Y, Najafi F, Moradinazar M, Shakiba E, Karim H, Hamzeh B, et al. Cohort profile: Ravansar non-communicable disease cohort study: the first cohort study in a Kurdish population. Int J Epidemiol. 2019;48(3):682–3f. https://doi.org/10.1093/ije/dyy296.
Google Scholar
Karyani AK, Matin BK, Soltani S, Rezaei S, Soofi M, Salimi Y, et al. Socioeconomic gradient in physical activity: findings from the PERSIAN cohort study. BMC Public Health. 2019;19(1):1312.
Google Scholar
Karimi S, Pasdar Y, Hamzeh B, Ayenehpour A, Heydarpour F, Goudarzi F. Obesity phenotypes related to musculoskeletal disorders; a cross-sectional study from RaNCD cohort. Archi Public Health. 2022;80(1):1–8.
Pasdar Y, Naja F, Moradinazar M, Shakiba E, Karim H, Hamzeh B, et al. Cohort pro le: Ravansar non-communicable disease cohort study: the rst cohort study in a Kurdish population. Inter J Epidemiol. 2019;48(3):682–3.
Google Scholar
Krebs-Smith SM, Pannucci TE, Subar AF, Kirkpatrick SI, Lerman JL, Tooze JA, et al. Update of the healthy eating index: HEI-2015. J Acad Nutr Diet. 2018;118(9):1591–602.
Google Scholar
Babazadeh-Anvigh B, Abedi V, Heydari S, Karamati D, Babajafari S, Najafi A, Rashidkhani B, Shariati-Bafghi SE, Karamati M. Healthy eating index-2015 and bone mineral density among adult Iranian women. Arch Osteoporos. 2020;15(1):151. https://doi.org/10.1007/s11657-020-00826-0.
Google Scholar
Viljakainen H, Valta H, Lipsanen-Nyman M, Saukkonen T, Kajantie E, Andersson S, Mäkitie O. Bone characteristics and their determinants in adolescents and young adults with early-onset severe obesity. Calcif Tissue Int. 2015;97:364–75.
Google Scholar
Haring B, Crandall CJ, Wu C, LeBlanc ES, Shikany JM, Carbone L, Orchard T, Thomas F, Wactawaski-Wende J, Li W. Dietary patterns and fractures in postmenopausal women: results from the women’s health initiative. JAMA Intern Med. 2016;176:645–52.
Google Scholar
Denova-Gutierrez E, Mendez-Sanchez L, Munoz-Aguirre P, Tucker KL, Clark P. Dietary patterns, bone mineral density, and risk of fractures: a systematic review and meta-analysis. Nutrients. 2018;10
Fabiani R, Naldini G, Chiavarini M. Dietary patterns in re- lation to low bone mineral density and fracture risk: a systematic review and meta-analysis. Adv Nutr. 2019;10:219–36.
Google Scholar
Mendonça RD, Pimenta AM, Gea A, de la Fuente-Arrillaga C, Martinez-Gonzalez MA, Lopes AC, Bes-Rastrollo M. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-up (SUN) cohort study. Am J Clin Nutr. 2016;104(5):1433–40.
Google Scholar
Xu Z, McClure ST, Appel LJ. Dietary Cholesterol Intake and Sources among U.S Adults: Results from National Health and Nutrition Examination Surveys (NHANES), 2001−2014. Nutrients. 2018;10(6):771. https://doi.org/10.3390/nu10060771.
Google Scholar
Sarkhosh-Khorasani S, Mozaffari-Khosravi H, Mirzaei M, Nadjarzadeh A, Hosseinzadeh M. Empirically derived dietary patterns and obesity among Iranian adults: Yazd health study-TAMYZ and Shahedieh cohort study. Food Sci Nutr. 2020;8(5):2478–89. https://doi.org/10.1002/fsn3.1538.
Google Scholar
Karpouzos A, Diamantis E, Farmaki P, Savvanis S, Troupis T. Nutritional aspects of bone health and fracture healing. J Osteoporos. 2017;2017:1–10.
Google Scholar
Sahni S, Mangano KM, McLean RR, Hannan MT, Kiel DP. Dietary approaches for bone health: lessons from the Framingham osteoporosis study. Curr Osteoporos Rep. 2015;13:245–55.
Google Scholar
Tucker KL, Hannan MT, Kiel DP. The acid-base hypothesis: diet and bone in the Framingham osteoporosis study. Eur J Nutr. 2001;40:231–7.
Google Scholar
Fateh HL, Mirzaei N, Gubari MI, Darbandi M, Najafi F, Pasdar Y. Association Between Dietary Total Antioxidant Capacity and Hypertension in Pre-and Postmenopausal Women; Finding From RaNCD Cohort Study.
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hebert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–96.
Google Scholar
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif. 2020;53:e12735.
Google Scholar
Fratoni V, Brandi ML. B vitamins, homocysteine and bone health. Nutrients. 2015;7:2176–92.
Google Scholar
DiNicolantonio JJ, Mehta V, Zaman SB, O’Keefe JH. Not Salt But Sugar As Aetiological In Osteoporosis: A Review. Mo Med. 2018;115(3):247-52.
Esmaeily Z, Tajary Z, Daei S, Rezaei M, Eyvazkhani A, Motlagh ARD, Palmowski A. Association between healthy eating Index-2015 scores and probable sarcopenia in community-dwelling Iranian older adults: a cross-sectional study. J Nutr Sci. 2021;10:151–60.
Google Scholar
Chan R, Leung J, Woo J. A prospective cohort study to examine the associa- tion between dietary patterns and sarcopenia in Chinese community- dwelling older people in Hong Kong. J Am Med Dir Assoc. 2016;17:336–42.
Google Scholar
Mohseni R, Aliakbar S, Abdollahi A, Yekaninejad MS, Maghbooli Z, Mirzaei K. Relationship between major dietary patterns and sarcopenia among menopausal women. Aging Clin Exp Res. 2017;29:1241–8.
Google Scholar
Granic A, Mendonça N, Sayer AA, Hill TR, Davies K, Siervo M, et al. E ects of dietary patterns and low protein intake on sarcopenia risk in the very old: the Newcastle 85+ study. Clin Nutr. 2020;39:166–73.
Google Scholar
Chun OK, Kim DO, Smith N, Schroeder D, Han JT, Lee CY. Daily consump- tion of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J Sci Food Agric. 2005;85:1715–24.
Google Scholar
Schaap LA, Pluijm SM, Deeg DJ, Visser M. In ammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119(526):e529–17.
Montiel-Rojas D, Santoro A, Nilsson A, Franceschi C, Capri M, Bazzocchi A, et al. Bene cial role of replacing dietary saturated fatty acids with poly- unsaturated fatty acids in the prevention of sarcopenia: ndings from the NU-AGE cohort. Nutrients. 2020;12:3079.
Google Scholar
Yoshida Y, Kosaki K, Sugasawa T, Matsui M, Yoshioka M, Aoki K, et al. High salt diet impacts the risk of sarcopenia associated with reduction of skeletal muscle performance in the Japanese population. Nutrients. 2020;12:3474.
Google Scholar
Cuesta-Triana F, Verdejo-Bravo C, Fernández-Pérez C, Martín-Sánchez FJ. E ect of Milk and other dairy products on the risk of frailty, sarcopenia, and cognitive performance decline in the elderly: a systematic review. Adv Nutr. 2019;10:S105–19.
Google Scholar