Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):1–11.
Google Scholar
Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Activity. 2010;7(1):1–16.
Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European Youth Heart Study). The Lancet. 2006;368(9532):299–304.
Singh AS, Mulder C, Twisk JW, Van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474–88.
Google Scholar
Baranowski T, O’Connor T, Johnston C, Hughes S, Moreno J, Chen T-A, et al. School year versus summer differences in child weight gain: a narrative review. Child Obes. 2014;10(1):18–24.
Google Scholar
Carrel AL, Clark RR, Peterson S, Eickhoff J, Allen DB. School-based fitness changes are lost during the summer vacation. Arch Pediatr Adolesc Med. 2007;161(6):561–4.
Google Scholar
Moreno JP, Johnston CA, Woehler D. Changes in weight over the school year and summer vacation: results of a 5-year longitudinal study. J Sch Health. 2013;83(7):473–7.
Google Scholar
von Hippel PT, Workman J. From kindergarten through second grade, US children’s obesity prevalence grows only during summer vacations. Obesity. 2016;24(11):2296–300.
Franckle R, Adler R, Davison K. Accelerated weight gain among children during summer versus school year and related racial/ethnic disparities: a systematic review. Prev Chronic Dis. 2014;11:E101.
Google Scholar
Brazendale K, Beets MW, Weaver RG, Pate RR, Turner-McGrievy GM, Kaczynski AT, et al. Understanding differences between summer vs. school obesogenic behaviors of children: the structured days hypothesis. Int J Behav Nutr Phys Activity. 2017;14(1):1–14.
Brusseau TA, Burns RD. Children’s weight gain and cardiovascular fitness loss over the summer. Int J Environ Res Public Health. 2018;15(12):2770.
Google Scholar
Brusseau TA, Burns RD, Fu Y, Weaver RG. Impact of year-round and traditional school schedules on summer weight gain and fitness loss. Child Obes. 2019;15(8):541–7.
Google Scholar
Bangkok Preparatory School. School calendar 2023. https://www.bangkokprep.ac.th/school-calendar/. Accessed 15 Sept 2023.
Ministry of Education. Academic calendar and key dates 2023. https://www.moe.gov.sg/calendar. 15 Sept 2023.
Ministere de l’Education Nationale et de la Jeunesse. Calendrier scolaire 2023. https://www.education.gouv.fr/calendrier-scolaire-100148. 15 Sept 2023.
Ministere de l’Education Nationale. Calendrier des vacances scolaires 2023/2024 2023. https://www.education.gov.dz/fr/agenda/. 15 Sept 2023.
American Academy of Pediatrics Committee on School Health. Health appraisal guidelines for day camps and resident camps. Pediatrics. 2005;115(6):1770–3.
Watson A, Maher C, Tomkinson GR, Golley R, Fraysse F, Dumuid D, et al. Life on holidays: study protocol for a 3-year longitudinal study tracking changes in children’s fitness and fatness during the in-school versus summer holiday period. BMC Public Health. 2019;19(1):1–8.
Australian Curriculum Assessment and Reporting Authority (ACARA). Glossary: index of community socio-educational advantage (ICSEA) 2023. https://myschool.edu.au/glossary/#i. 1 Feb 2023.
World Health Organization (WHO). BMI-for-age (5–19 years) 2007. https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age. 1 Feb 2023.
Jensky-Squires NE, Dieli-Conwright CM, Rossuello A, Erceg DN, McCauley S, Schroeder ET. Validity and reliability of body composition analysers in children and adults. Br J Nutr. 2008;100(4):859–65.
Google Scholar
Berkson SS, Espinola J, Corso KA, Cabral H, McGowan R, Chomitz VR. Reliability of height and weight measurements collected by physical education teachers for a school-based body mass index surveillance and screening system. J Sch Health. 2013;83(1):21–7.
Google Scholar
Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.
Google Scholar
Nevill AM, Ramsbottom R, Sandercock G, Bocachica-González CE, Ramírez-Vélez R, Tomkinson G. Developing a new curvilinear allometric model to improve the fit and validity of the 20-m shuttle run test as a predictor of cardiorespiratory fitness in adults and youth. Sports Med. 2021;51:1581–9.
Google Scholar
Tomkinson GR, Lang JJ, Blanchard J, Léger LA, Tremblay MS. The 20-m shuttle run: assessment and interpretation of data in relation to youth aerobic fitness and health. Pediatr Exerc Sci. 2019;31(2):152–63.
Google Scholar
Mayorga-Vega D, Aguilar-Soto P, Viciana J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sports Sci Med. 2015;14(3):536.
Google Scholar
Docherty D. Field tests and test batteries. In: Docherty D, editor. Measurement in Pediatric Exercise Science. Champaign, IL: Human Kinetics; 1996. pp. 285–334.
Castro-Piñero J, Ortega FB, Artero EG, Girela-Rejón MJ, Mora J, Sjöström M, et al. Assessing muscular strength in youth: usefulness of standing long jump as a general index of muscular fitness. J Strength Conditioning Res. 2010;24(7):1810–7.
Pillsbury L, Oria M, Pate R. Fitness measures and health outcomes in youth. Washington (DC): National Academies Press (US); 2013.
Fjørtoft I, Pedersen AV, Sigmundsson H, Vereijken B. Measuring physical fitness in children who are 5 to 12 years old with a test Battery that is functional and easy to administer. Phys Ther. 2011;91(7):1087–95.
Google Scholar
Gibbings J, Blakemore T, Strazdins L. Measuring family socioeconomic position. Australian Social Policy. 2009;8:121–68.
Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17(2):117–33.
Google Scholar
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240.
Google Scholar
Pinheiro J, Bates D, R Core Team. _nlme: linear and nonlinear mixed effects models. R package version 3.1–157, Vienna, Austria; 2022. https://CRAN.R-project.org/package=nlme.
Pinheiro J, Bates D. Linear mixed-effects models: basic concepts and examples. Mixed-effects models in S and S-Plus. Springer: New York;; 2000. https://doi.org/10.1007/b98882.
Smith DT, Bartee RT, Dorozynski CM, Carr LJ. Prevalence of overweight and influence of out-of-school seasonal periods on body mass index among American. Indian Schoolchildren. 2009;6(1):A20.
Von Hippel PT, Powell B, Downey DB, Rowland NJ. The effect of school on overweight in childhood: gain in body mass index during the school year and during summer vacation. Am J Public Health. 2007;97(4):696–702.
Sallis JF, McKenzie TL, Alcaraz JE, Kolody B, Faucette N, Hovell MF. The effects of a 2-year physical education program (SPARK) on physical activity and fitness in elementary school students. Sports, play and active recreation for kids. Am J Public Health. 1997;87(8):1328–34.
Google Scholar
Fu Y, Brusseau TA, Hannon JC, Burns RD. Effect of a 12-week summer break on school day physical activity and health-related fitness in low-income children from CSPAP schools. J Environ Public Health. 2017;2017:9760817.
Google Scholar
Sallis JF, Conway TL, Cain KL, Carlson JA, Frank LD, Kerr J, et al. Neighborhood built environment and socioeconomic status in relation to physical activity, sedentary behavior, and weight status of adolescents. Prev Med. 2018;110:47–54.
Google Scholar
Alexander KL, Entwisle DR, Olson LS. Summer learning and its implications: insights from the beginning School Study. New Dir Youth Dev. 2007;(114):11–32.
Tomkinson GR, Carver KD, Atkinson F, Daniell ND, Lewis LK, Fitzgerald JS, et al. European normative values for physical fitness in children and adolescents aged 9–17 years: results from 2 779 165 eurofit performances representing 30 countries. Br J Sports Med. 2018;52(22):1445–56.
Google Scholar
Olds T, Maher C, Dumuid D. Life on holidays: differences in activity composition between school and holiday periods in Australian children. BMC Public Health. 2019;19(2):1–8.
Cureton KJ, Boileau RA, Lohman TG, Misner JE. Determinants of distance running performance in children: analysis of a path model. Res Q Am Alliance Health Phys Educ Recreation. 1977;48(2):270–9.
Google Scholar
McCarthy H, Cole T, Fry T, Jebb S, Prentice A. Body fat reference curves for children. Int J Obes. 2006;30(4):598–602.
Google Scholar
Tomkinson GR, Lang JJ, Tremblay MS, Dale M, LeBlanc AG, Belanger K, et al. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br J Sports Med. 2017;51(21):1545–54.
Google Scholar
Bohnert A, Zarrett N, Beets MW, Hall G, Buscemi J, Heard A, et al. Society of behavioral medicine (SBM) position statement: SBM supports curbing summertime weight gain among America’s youth. Translational Behav Med. 2017;7(4):912–4.
Dugger R, Brazendale K, Hunt E, Moore J, Turner-McGrievy G, Vogler K, et al. The impact of summer programming on the obesogenic behaviors of children: behavioral outcomes from a quasi-experimental pilot trial. Pilot and Feasibility Studies. 2020;6:1–15.
Park K-S, Lee M-G. Effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness during summer break. J Exerc Nutr Biochem. 2015;19(2):81.
Mahoney JL. Adolescent summer care arrangements and risk for obesity the following school year. J Adolesc. 2011;34(4):737–49.
Google Scholar
George GL, Schneider C, Kaiser L. Healthy Lifestyle Fitness Camp: a summer approach to prevent obesity in low-income youth. J Nutr Educ Behav. 2016;48(3):208–12e1.
Google Scholar
English R. Should Aussie kids go on US-style summer camps? The Conversation. 2015.
Brown H, Atkin A, Panter J, Wong G, Chinapaw MJ, Van Sluijs E. Family-based interventions to increase physical activity in children: a systematic review, meta‐analysis and realist synthesis. Obes Rev. 2016;17(4):345–60.
Google Scholar
Kothandan SK. School based interventions versus family based interventions in the treatment of childhood obesity-a systematic review. Archives of Public Health. 2014;72:1–17.