Abstract
Diet is a modifiable lifestyle factor with a proven role in cardiovascular disease risk reduction that might also play an important part in cognitive health. Evidence from observational studies has linked certain healthy dietary patterns to cognitive benefits. However, clinical trials of diet interventions have demonstrated either null or, at best, small effects on cognitive outcomes. In this Review, we summarize the currently available evidence from observational epidemiology and clinical trials regarding the potential role of diet in the prevention of cognitive decline and dementia. We further discuss possible methodological limitations that might have hindered the ability of previous diet intervention trials to capture potential neuroprotective effects. Considering the overwhelming and continuously expanding societal, economic and health-care burden of Alzheimer disease and other dementias, future nutritional research must address past methodological challenges to accurately and reliably inform clinical practice guidelines and public health policies. Within this scope, we provide a roadmap for future diet intervention trials for dementia prevention. We discuss study designs involving both intensive personalized interventions — to evaluate pharmacokinetic and pharmacodynamic properties, establish neuroprotective thresholds, and test hypothesized biological mechanisms and effects on brain health and cognition through sensitive and precise biomarker measures — and large-scale, pragmatic public health interventions to study population-level benefits.
Key points
-
Considering the rising prevalence of dementia in the ageing population, effective strategies to promote healthy brain ageing and reduce dementia risk are a crucial public health priority.
-
Diet is a modifiable lifestyle factor that may have an important role in cognitive health maintenance through pathways involving neurodegeneration, vascular health, energy metabolism, inflammation, epigenetics and other biological mechanisms.
-
Although observational studies suggest that adherence to certain healthy dietary patterns can protect against cognitive decline and dementia, randomized controlled trials have failed to robustly and consistently support these findings.
-
Several aspects of study design, such as participant selection criteria, intervention choice, intensity and duration, and cognitive outcome selection, might have hindered the ability of previous diet intervention trials to capture cognitive effects.
-
Strategies to overcome past roadblocks could involve leveraging both traditional population science tools and new and innovative biomarker measures within a precision or personalized medicine framework.
This is a preview of subscription content, access via your institution
Access options
/* style specs end */
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */
References
-
2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 20, 3708–3821 (2024).
-
Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).
Google Scholar
-
Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).
Google Scholar
-
Lichtenstein A. H. et al. 2021 dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association. Circulation 144, e472–e487 (2021).
-
Yannakoulia, M. & Scarmeas, N. Diets. N. Engl. J. Med. 390, 2098–2106 (2024).
Google Scholar
-
Sabia, S. et al. Association of ideal cardiovascular health at age 50 with incidence of dementia: 25 year follow-up of Whitehall II cohort study. BMJ 366, l4414 (2019).
Google Scholar
-
Yassine, H. N. et al. Nutrition state of science and dementia prevention: recommendations of the Nutrition for Dementia Prevention Working Group. Lancet Healthy Longev. 3, e501–e512 (2022).
Google Scholar
-
Scarmeas, N., Anastasiou, C. A. & Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 17, 1006–1015 (2018).
Google Scholar
-
Belder, C. R. S., Schott, J. M. & Fox, N. C. Preparing for disease-modifying therapies in Alzheimer’s disease. Lancet Neurol. 22, 782–783 (2023).
Google Scholar
-
Tan, Z. S. The dawn of disease modification for Alzheimer’s disease: hope and peril. J. Am. Geriatr. Soc. 70, 1661–1663 (2022).
Google Scholar
-
Willett, W. C. et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am. J. Clin. Nutr. 61, 1402S–1406S (1995).
Google Scholar
-
Martínez-Lapiscina, E. H., Clavero, P. & Toledo, E. et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 84, 1318–1325 (2013).
Google Scholar
-
Valls-Pedret, C. et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern. Med. 175, 1094–1103 (2015).
Google Scholar
-
Knight, A. et al. The Mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: the MedLey study. Nutrients 8, 579 (2016).
Google Scholar
-
Fu, J., Tan, L. J., Lee, J. E. & Shin, S. Association between the Mediterranean diet and cognitive health among healthy adults: a systematic review and meta-analysis. Front. Nutr. 9, 946361 (2022).
Google Scholar
-
Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).
Google Scholar
-
Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 344, 3–10 (2001).
Google Scholar
-
Wengreen, H. et al. Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am. J. Clin. Nutr. 98, 1263–1271 (2013).
Google Scholar
-
Berendsen, A. A. M. et al. The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. J. Am. Med. Dir. Assoc. 18, 427–432 (2017).
Google Scholar
-
Haring, B. et al. No association between dietary patterns and risk for cognitive decline in older women with 9-year follow-up: data from the women’s health initiative memory study. J. Acad. Nutr. Diet. 116, 921–930.e1 (2016).
Google Scholar
-
Shakersain, B. et al. The Nordic prudent diet reduces risk of cognitive decline in the Swedish older adults: a population-based cohort study. Nutrients 10, 229 (2018).
Google Scholar
-
Nishi, S. K. et al. Mediterranean, DASH, and MIND dietary patterns and cognitive function: the 2-year longitudinal changes in an older Spanish cohort. Front. Aging Neurosci. 13, 782067 (2021).
Google Scholar
-
Daniel, G. D. et al. DASH diet adherence and cognitive function: multi-ethnic study of atherosclerosis. Clin. Nutr. ESPEN 46, 223–231 (2021).
Google Scholar
-
Blumenthal, J. A. et al. Lifestyle and neurocognition in older adults with cognitive impairments: a randomized trial. Neurology 92, e212–e223 (2019).
Google Scholar
-
Morris, M. C. et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 11, 1015–1022 (2015).
Google Scholar
-
Hosking, D. E., Eramudugolla, R., Cherbuin, N. & Anstey, K. J. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement. 15, 581–589 (2019).
Google Scholar
-
Huang, L. et al. Mediterranean-dietary approaches to stop hypertension intervention for neurodegenerative delay (MIND) diet and cognitive function and its decline: a prospective study and meta-analysis of cohort studies. Am. J. Clin. Nutr. 118, 174–182 (2023).
Google Scholar
-
Thomas, A. et al. Diet, pace of biological aging, and risk of dementia in the Framingham Heart Study. Ann. Neurol. 95, 1069–1079 (2024).
Google Scholar
-
Thomas, A. et al. Association of a MIND diet with brain structure and dementia in a French population. J. Prev. Alzheimers Dis. 9, 655–664 (2022).
Google Scholar
-
Sawyer, R. P., Blair, J., Shatz, R., Manly, J. J. & Judd, S. E. Association of adherence to a MIND-style diet with the risk of cognitive impairment and decline in the REGARDS cohort. Neurology 103, e209817 (2024).
Google Scholar
-
Berendsen, A. M. et al. Association of long-term adherence to the MIND diet with cognitive function and cognitive decline in American women. J. Nutr. Health Aging 22, 222–229 (2018).
Google Scholar
-
Melo van Lent, D. et al. Mind diet adherence and cognitive performance in the Framingham Heart Study. J. Alzheimers Dis. 82, 827–839 (2021).
Google Scholar
-
Boumenna, T. et al. MIND diet and cognitive function in Puerto Rican older adults. J. Gerontol. A Biol. Sci. Med. Sci. 77, 605–613 (2022).
Google Scholar
-
Barnes, L. L. et al. Trial of the MIND diet for prevention of cognitive decline in older persons. N. Engl. J. Med. 389, 602–611 (2023).
Google Scholar
-
Zhang, X. et al. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am. J. Clin. Nutr. 114, 429–440 (2021).
Google Scholar
-
Hayden, K. M. et al. The association between an inflammatory diet and global cognitive function and incident dementia in older women: the Women’s Health Initiative Memory Study. Alzheimers Dement. 13, 1187–1196 (2017).
Google Scholar
-
Shi, Y. et al. Association of pro-inflammatory diet with increased risk of all-cause dementia and Alzheimer’s dementia: a prospective study of 166,377 UK Biobank participants. BMC Med. 21, 266 (2023).
Google Scholar
-
Ozawa, M., Shipley, M., Kivimaki, M., Singh-Manoux, A. & Brunner, E. J. Dietary pattern, inflammation and cognitive decline: the Whitehall II prospective cohort study. Clin. Nutr. 36, 506–512 (2017).
Google Scholar
-
Charisis, S. et al. Diet inflammatory index and dementia incidence: a population-based study. Neurology 97, e2381–e2391 (2021).
Google Scholar
-
Melo van Lent, D. et al. Association between dietary inflammatory index score and incident dementia: results from the Framingham Heart Study Offspring cohort. Preprint at medRxiv https://doi.org/10.1101/2023.08.21.23294374 (2023).
-
Shivappa, N., Steck, S. E., Hurley, T. G., Hussey, J. R. & Hébert, J. R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 17, 1689–1696 (2014).
Google Scholar
-
Tsai, J. H. et al. Taiwanese vegetarians are associated with lower dementia risk: a prospective cohort study. Nutrients 14, 588 (2022).
Google Scholar
-
Liu, X. et al. A healthy plant-based diet was associated with slower cognitive decline in African American older adults: a biracial community-based cohort. Am. J. Clin. Nutr. 116, 875–886 (2022).
Google Scholar
-
de Crom, T. O. E., Steur, M., Ikram, M. K., Ikram, M. A. & Voortman, T. Plant-based dietary patterns and the risk of dementia: a population-based study. Age Ageing 52, afad178 (2023).
Google Scholar
-
Kanerva, N., Kaartinen, N. E., Schwab, U., Lahti-Koski, M. & Männistö, S. Adherence to the Baltic Sea diet consumed in the Nordic countries is associated with lower abdominal obesity. Br. J. Nutr. 109, 520–528 (2013).
Google Scholar
-
Ballarini, T. et al. Mediterranean diet, Alzheimer disease biomarkers, and brain atrophy in old age. Neurology 96, e2920 (2021).
Google Scholar
-
Rainey-Smith, S. R. et al. Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: data from the Australian imaging, biomarkers and lifestyle study of ageing. Transl. Psychiatry 8, 238 (2018).
Google Scholar
-
Berti, V. et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 90, e1789–e1798 (2018).
Google Scholar
-
Hill, E., Goodwill, A. M., Gorelik, A. & Szoeke, C. Diet and biomarkers of Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol. Aging 76, 45–52 (2019).
Google Scholar
-
Kaplan, A. et al. The effect of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on age-related brain atrophy: the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT PLUS). Am. J. Clin. Nutr. 115, 1270–1281 (2022).
Google Scholar
-
Melo Van Lent, D. et al. Higher dietary inflammatory index scores are associated with brain MRI markers of brain aging: results from the Framingham Heart Study Offspring cohort. Alzheimers Dement. 19, 621–631 (2023).
Google Scholar
-
Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 124, 779–798 (2019).
Google Scholar
-
Gottesman, R. F. et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 74, 1246–1254 (2017).
Google Scholar
-
Luchsinger, J. A. et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545–551 (2005).
Google Scholar
-
Gardener, H. et al. Mediterranean diet and white matter hyperintensity volume in the Northern Manhattan Study. Arch. Neurol. 69, 251–256 (2012).
Google Scholar
-
Scarmeas, N. et al. Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Ann. Neurol. 69, 257–268 (2011).
Google Scholar
-
Weaver, N. A. et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol. 20, 448–459 (2021).
Google Scholar
-
Filley, C. M. & Fields, R. D. White matter and cognition: making the connection. J. Neurophysiol. 116, 2093–2104 (2016).
Google Scholar
-
Scheffer, S., Hermkens, D. M. A., van der Weerd, L., de Vries, H. E. & Daemen, M. J. A. P. Vascular hypothesis of Alzheimer disease. Arterioscler. Thromb. Vasc. Biol. 41, 1265–1283 (2021).
Google Scholar
-
Larsson, S. C., Wallin, A. & Wolk, A. Dietary approaches to stop hypertension diet and incidence of stroke. Stroke 47, 986–990 (2016).
Google Scholar
-
Chen, H. et al. Associations of the Mediterranean-DASH intervention for neurodegenerative delay diet with brain structural markers and their changes. Alzheimers Dement. 20, 1190–1200 (2024).
Google Scholar
-
Dede, D. S. et al. Assessment of endothelial function in Alzheimer’s disease: is Alzheimer’s disease a vascular disease? J. Am. Geriatr. Soc. 55, 1613–1617 (2007).
Google Scholar
-
Khalil, Z., LoGiudice, D., Khodr, B., Maruff, P. & Masters, C. Impaired peripheral endothelial microvascular responsiveness in Alzheimer’s disease. J. Alzheimers Dis. 11, 25–32 (2007).
Google Scholar
-
Borroni, B. et al. Peripheral blood abnormalities in Alzheimer disease: evidence for early endothelial dysfunction. Alzheimer Dis. Assoc. Disord. 16, 150–155 (2002).
Google Scholar
-
Zuliani, G. et al. Markers of endothelial dysfunction in older subjects with late onset Alzheimer’s disease or vascular dementia. J. Neurol. Sci. 272, 164–170 (2008).
Google Scholar
-
Kelleher, R. J. & Soiza, R. L. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: is Alzheimer’s a vascular disorder? Am. J. Cardiovasc. Dis. 3, 197–226 (2013).
Google Scholar
-
Torres-Peña, J. D., Rangel-Zuñiga, O. A., Alcala-Diaz, J. F., Lopez-Miranda, J. & Delgado-Lista, J. Mediterranean diet and endothelial function: a review of its effects at different vascular bed levels. Nutrients 12, 2212 (2020).
Google Scholar
-
Yubero-Serrano, E. M. et al. Mediterranean diet and endothelial function in patients with coronary heart disease: an analysis of the CORDIOPREV randomized controlled trial. PLoS Med. 17, e1003282 (2020).
Google Scholar
-
Yassine, H. N. et al. Nutritional metabolism and cerebral bioenergetics in Alzheimer’s disease and related dementias. Alzheimers Dement. 19, 1041–1066 (2022).
Google Scholar
-
Kalaria, R. N. & Harik, S. I. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease. J. Neurochem. 53, 1083–1088 (1989).
Google Scholar
-
Simpson, I. A. & Davies, P. Reduced glucose transporter concentrations in brains of patients with Alzheimer’s disease. Ann. Neurol. 36, 800–801 (1994).
Google Scholar
-
Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C. X. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J. Neurochem. 111, 242–249 (2009).
Google Scholar
-
Kellar, D. & Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19, 758–766 (2020).
Google Scholar
-
Blass, J. P., Sheu, K. F., Piacentini, S. & Sorbi, S. Inherent abnormalities in oxidative metabolism in Alzheimer’s disease: interaction with vascular abnormalities. Ann. N. Y. Acad. Sci. 826, 382–385 (1997).
Google Scholar
-
Sharma, C., Kim, S., Nam, Y., Jung, U. J. & Kim, S. R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int J. Mol. Sci. 22, 4850 (2021).
Google Scholar
-
Sultana, R., Perluigi, M. & Butterfield, D. A. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid. Redox Signal. 8, 2021–2037 (2006).
Google Scholar
-
Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging 25, 5–18 (2004).
Google Scholar
-
Nasrabady, S. E., Rizvi, B., Goldman, J. E. & Brickman, A. M. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol. Commun. 6, 22 (2018).
Google Scholar
-
Acosta, C., Anderson, H. D. & Anderson, C. M. Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 95, 2430–2447 (2017).
Google Scholar
-
Baik, S. H. et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 30, 493–507.e6 (2019).
Google Scholar
-
Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648.e6 (2022).
Google Scholar
-
Bowman, G. L. et al. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68, 1809–1814 (2007).
Google Scholar
-
Matthews, D. C. et al. Physical activity, Mediterranean diet and biomarkers-assessed risk of Alzheimer’s: a multi-modality brain imaging study. Adv. Mol. Imaging 4, 43–57 (2014).
Google Scholar
-
Sureda, A. et al. Mediterranean diets supplemented with virgin olive oil and nuts enhance plasmatic antioxidant capabilities and decrease xanthine oxidase activity in people with metabolic syndrome: the PREDIMED study. Mol. Nutr. Food Res. 60, 2654–2664 (2016).
Google Scholar
-
Sofi, F. et al. Low-calorie vegetarian versus Mediterranean diets for reducing body weight and improving cardiovascular risk profile: CARDIVEG Study (Cardiovascular Prevention With Vegetarian Diet). Circulation 137, 1103–1113 (2018).
-
Davis, C. R., Bryan, J., Hodgson, J. M., Woodman, R. & Murphy, K. J. A Mediterranean diet reduces F(2)-isoprostanes and triglycerides among older Australian men and women after 6 months. J. Nutr. 147, 1348–1355 (2017).
Google Scholar
-
Choi, S. H. & Choi-Kwon, S. The effects of the DASH diet education program with omega-3 fatty acid supplementation on metabolic syndrome parameters in elderly women with abdominal obesity. Nutr. Res. Pract. 9, 150–157 (2015).
Google Scholar
-
Razavi Zade, M. et al. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: a randomized clinical trial. Liver Int. 36, 563–571 (2016).
Google Scholar
-
Forman, H. J., Zhang, H. & Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12 (2009).
Google Scholar
-
Franceschi, C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).
Google Scholar
-
Tangestani Fard, M. & Stough, C. A review and hypothesized model of the mechanisms that underpin the relationship between inflammation and cognition in the elderly. Front. Aging Neurosci. 11, 56 (2019).
Google Scholar
-
Giunta, B. et al. Inflammaging as a prodrome to Alzheimer’s disease. J. Neuroinflammation 5, 51 (2008).
Google Scholar
-
Casas, R. et al. Long-term immunomodulatory effects of a Mediterranean diet in adults at high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. J. Nutr. 146, 1684–1693 (2016).
Google Scholar
-
Esposito, K. et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292, 1440–1446 (2004).
Google Scholar
-
Soltani, S., Chitsazi, M. J. & Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: a systematic review and meta-analysis of randomized trials. Clin. Nutr. 37, 542–550 (2018).
Google Scholar
-
Duggan, M. R. et al. Plasma proteins related to inflammatory diet predict future cognitive impairment. Mol. Psychiatry 28, 1599–1609 (2023).
Google Scholar
-
Liu, X., Jiao, B. & Shen, L. The epigenetics of Alzheimer’s disease: factors and therapeutic implications. Front. Genet. 9, 579 (2018).
Google Scholar
-
Nicolia, V., Lucarelli, M. & Fuso, A. Environment, epigenetics and neurodegeneration: focus on nutrition in Alzheimer’s disease. Exp. Gerontol. 68, 8–12 (2015).
Google Scholar
-
Athanasopoulos, D., Karagiannis, G. & Tsolaki, M. Recent findings in Alzheimer disease and nutrition focusing on epigenetics. Adv. Nutr. 7, 917–927 (2016).
Google Scholar
-
Gensous, N. et al. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: a pilot study from the NU-AGE project. Geroscience 42, 687–701 (2020).
Google Scholar
-
Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 67–686 (2024).
Google Scholar
-
Schneider, E., O’Riordan, K. J., Clarke, G. & Cryan, J. F. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat. Metab. 6, 1454–1478 (2024).
Google Scholar
-
Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020).
Google Scholar
-
Choo, J. M. et al. Interactions between Mediterranean diet supplemented with dairy foods and the gut microbiota influence cardiovascular health in an Australian population. Nutrients 15, 3645 (2023).
Google Scholar
-
van Soest, A. P. M. et al. Associations between pro- and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in Dutch healthy older adults: the NU-AGE study. Nutrients 12, 3471 (2020).
Google Scholar
-
Pelletier, A. et al. Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimers Dement. 11, 1023–1031 (2015).
Google Scholar
-
Ruiz-Rizzo, A. L. et al. Fornix fractional anisotropy mediates the association between Mediterranean diet adherence and memory four years later in older adults without dementia. Neurobiol. Aging 136, 99–110 (2024).
Google Scholar
-
Drouka, A., Mamalaki, E., Karavasilis, E., Scarmeas, N. & Yannakoulia, M. Dietary and nutrient patterns and brain MRI biomarkers in dementia-free adults. Nutrients 14, 2345 (2022).
Google Scholar
-
Xue, B. et al. Brain-derived neurotrophic factor: a connecting link between nutrition, lifestyle, and Alzheimer’s disease. Front. Neurosci. 16, 925991 (2022).
Google Scholar
-
Martínez-Lapiscina, E. H. et al. Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: the PREDIMED-NAVARRA trial. Genes Nutr. 9, 393 (2014).
Google Scholar
-
Martínez-González, M. et al. Cohort profile: design and methods of the PREDIMED study. Int. J. Epidemiol. 41, 377–385 (2012).
Google Scholar
-
Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).
Google Scholar
-
Carlisle, J. B. Data fabrication and other reasons for non-random sampling in 5087 randomised, controlled trials in anaesthetic and general medical journals. Anaesthesia 72, 944–952 (2017).
Google Scholar
-
Scarmeas, N. Mediterranean food for thought? J. Neurol. Neurosurg. Psychiatry 84, 1297 (2013).
-
Mosconi, L. et al. Increased fibrillar amyloid-β burden in normal individuals with a family history of late-onset Alzheimer’s. Proc. Natl Acad. Sci. USA 107, 5949–5954 (2010).
Google Scholar
-
Honea, R. A., Vidoni, E. D., Swerdlow, R. H. & Burns, J. M. Maternal family history is associated with Alzheimer’s disease biomarkers. J. Alzheimers Dis. 31, 659–668 (2012).
Google Scholar
-
Shannon, O. M. et al. Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: findings from the UK Biobank prospective cohort study. BMC Med. 21, 81 (2023).
Google Scholar
-
Vu, T. H. T. et al. Adherence to MIND diet, genetic susceptibility, and incident dementia in three US cohorts. Nutrients 14, 2759 (2022).
Google Scholar
-
Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11, 1006–1012 (2012).
Google Scholar
-
Samieri, C. et al. Personalized nutrition for dementia prevention. Alzheimers Dement. 18, 1424–1437 (2022).
Google Scholar
-
Chinna-Meyyappan, A. et al. Effects of the ketogenic diet on cognition: a systematic review. Nutr. Neurosci. 26, 1258–1278 (2023).
Google Scholar
-
Neth, B. J. et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: a pilot study. Neurobiol. Aging 86, 54–63 (2020).
Google Scholar
-
Gomes Gonçalves, N. et al. Association between consumption of ultraprocessed foods and cognitive decline. JAMA Neurol. 80, 142–150 (2023).
Google Scholar
-
Li, H. et al. Association of ultraprocessed food consumption with risk of dementia: a prospective cohort study. Neurology 99, e1056–e1066 (2022).
Google Scholar
-
Cabo, R. D. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).
Google Scholar
-
Gudden, J., Arias Vasquez, A. & Bloemendaal, M. The effects of intermittent fasting on brain and cognitive function. Nutrients 13, 3166 (2021).
Google Scholar
-
Schwedhelm, C. et al. Using food network analysis to understand meal patterns in pregnant women with high and low diet quality. Int. J. Behav. Nutr. Phys. Act. 18, 101 (2021).
Google Scholar
-
Samieri, C. et al. Using network science tools to identify novel diet patterns in prodromal dementia. Neurology 94, e2014–e2025 (2020).
Google Scholar
-
Meier, I. B. et al. Using a Digital Neuro Signature to measure longitudinal individual-level change in Alzheimer’s disease: the Altoida large cohort study. npj Digit. Med. 4, 101 (2021).
Google Scholar
-
Mirmiran, P., Bahadoran, Z. & Gaeini, Z. Common limitations and challenges of dietary clinical trials for translation into clinical practices. Int. J. Endocrinol. Metab. 19, e108170 (2021).
Google Scholar
-
Gilmore-Bykovskyi, A. L. et al. Recruitment and retention of underrepresented populations in Alzheimer’s disease research: a systematic review. Alzheimers Dement. 5, 751–770 (2019).
-
Barnes, L. L. et al. Mixed pathology is more likely in black than white decedents with Alzheimer dementia. Neurology 85, 528–534 (2015).
Google Scholar
-
Graff-Radford, N. R., Besser, L. M., Crook, J. E., Kukull, W. A. & Dickson, D. W. Neuropathologic differences by race from the National Alzheimer’s Coordinating Center. Alzheimers Dement. 12, 669–677 (2016).
Google Scholar
-
Indorewalla, K. K., O’Connor, M. K., Budson, A. E., Guess DiTerlizzi, C. & Jackson, J. Modifiable barriers for recruitment and retention of older adults participants from underrepresented minorities in Alzheimer’s disease research. J. Alzheimers Dis. 80, 927–940 (2021).
Google Scholar
-
Tucker, K. L., Bianchi, L. A., Maras, J. & Bermudez, O. I. Adaptation of a food frequency questionnaire to assess diets of Puerto Rican and non-Hispanic adults. Am. J. Epidemiol. 148, 507–518 (1998).
Google Scholar
-
Pannen, S. T. et al. Development of a multilingual web-based food frequency questionnaire for adults in Switzerland. Nutrients 15, 4359 (2023).
Google Scholar
-
Eldridge, A. L. et al. Evaluation of new technology-based tools for dietary intake assessment-an ILSI Europe dietary intake and exposure task force evaluation. Nutrients 11, 55 (2018).
Google Scholar
-
Mc Cord, K. A. et al. Routinely collected data for randomized trials: promises, barriers, and implications. Trials 19, 29 (2018).
Google Scholar
-
Richard, E. et al. Healthy ageing through internet counselling in the elderly (HATICE): a multinational, randomised controlled trial. Lancet Digit. Health 1, e424–e434 (2019).
Google Scholar
-
Richard, E. et al. Methodological challenges in designing dementia prevention trials — the European Dementia Prevention Initiative (EDPI). J. Neurol. Sci. 322, 64–70 (2012).
Google Scholar
-
Whelan, R., Barbey, F. M., Cominetti, M. R., Gillan, C. M. & Rosická, A. M. Developments in scalable strategies for detecting early markers of cognitive decline. Transl. Psychiatry 12, 473 (2022).
Google Scholar
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
N.S. has received grants from European Union Horizon Projects, the Hellenic Foundation for Research & Innovation, and Novo Nordisk during the conduct of the study, all outside the submitted work. S.C. and M.Y. declare no competing interests.
Peer review
Peer review information
Nature Reviews Neurology thanks John Cryan, Cécilia Samieri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Charisis, S., Yannakoulia, M. & Scarmeas, N. Diets to promote healthy brain ageing.
Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-01036-9
-
Accepted: 25 October 2024
-
Published: 21 November 2024
-
DOI: https://doi.org/10.1038/s41582-024-01036-9