Diets to promote healthy brain ageing


Abstract

Diet is a modifiable lifestyle factor with a proven role in cardiovascular disease risk reduction that might also play an important part in cognitive health. Evidence from observational studies has linked certain healthy dietary patterns to cognitive benefits. However, clinical trials of diet interventions have demonstrated either null or, at best, small effects on cognitive outcomes. In this Review, we summarize the currently available evidence from observational epidemiology and clinical trials regarding the potential role of diet in the prevention of cognitive decline and dementia. We further discuss possible methodological limitations that might have hindered the ability of previous diet intervention trials to capture potential neuroprotective effects. Considering the overwhelming and continuously expanding societal, economic and health-care burden of Alzheimer disease and other dementias, future nutritional research must address past methodological challenges to accurately and reliably inform clinical practice guidelines and public health policies. Within this scope, we provide a roadmap for future diet intervention trials for dementia prevention. We discuss study designs involving both intensive personalized interventions — to evaluate pharmacokinetic and pharmacodynamic properties, establish neuroprotective thresholds, and test hypothesized biological mechanisms and effects on brain health and cognition through sensitive and precise biomarker measures — and large-scale, pragmatic public health interventions to study population-level benefits.

Key points

  • Considering the rising prevalence of dementia in the ageing population, effective strategies to promote healthy brain ageing and reduce dementia risk are a crucial public health priority.

  • Diet is a modifiable lifestyle factor that may have an important role in cognitive health maintenance through pathways involving neurodegeneration, vascular health, energy metabolism, inflammation, epigenetics and other biological mechanisms.

  • Although observational studies suggest that adherence to certain healthy dietary patterns can protect against cognitive decline and dementia, randomized controlled trials have failed to robustly and consistently support these findings.

  • Several aspects of study design, such as participant selection criteria, intervention choice, intensity and duration, and cognitive outcome selection, might have hindered the ability of previous diet intervention trials to capture cognitive effects.

  • Strategies to overcome past roadblocks could involve leveraging both traditional population science tools and new and innovative biomarker measures within a precision or personalized medicine framework.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */

/* style specs end */

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

/* style specs start */
style {
display: none !important;
}
.LiveAreaSection * {
align-content: stretch;
align-items: stretch;
align-self: auto;
animation-delay: 0s;
animation-direction: normal;
animation-duration: 0s;
animation-fill-mode: none;
animation-iteration-count: 1;
animation-name: none;
animation-play-state: running;
animation-timing-function: ease;
azimuth: center;
backface-visibility: visible;
background-attachment: scroll;
background-blend-mode: normal;
background-clip: borderBox;
background-color: transparent;
background-image: none;
background-origin: paddingBox;
background-position: 0 0;
background-repeat: repeat;
background-size: auto auto;
block-size: auto;
border-block-end-color: currentcolor;
border-block-end-style: none;
border-block-end-width: medium;
border-block-start-color: currentcolor;
border-block-start-style: none;
border-block-start-width: medium;
border-bottom-color: currentcolor;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;
border-bottom-style: none;
border-bottom-width: medium;
border-collapse: separate;
border-image-outset: 0s;
border-image-repeat: stretch;
border-image-slice: 100%;
border-image-source: none;
border-image-width: 1;
border-inline-end-color: currentcolor;
border-inline-end-style: none;
border-inline-end-width: medium;
border-inline-start-color: currentcolor;
border-inline-start-style: none;
border-inline-start-width: medium;
border-left-color: currentcolor;
border-left-style: none;
border-left-width: medium;
border-right-color: currentcolor;
border-right-style: none;
border-right-width: medium;
border-spacing: 0;
border-top-color: currentcolor;
border-top-left-radius: 0;
border-top-right-radius: 0;
border-top-style: none;
border-top-width: medium;
bottom: auto;
box-decoration-break: slice;
box-shadow: none;
box-sizing: border-box;
break-after: auto;
break-before: auto;
break-inside: auto;
caption-side: top;
caret-color: auto;
clear: none;
clip: auto;
clip-path: none;
color: initial;
column-count: auto;
column-fill: balance;
column-gap: normal;
column-rule-color: currentcolor;
column-rule-style: none;
column-rule-width: medium;
column-span: none;
column-width: auto;
content: normal;
counter-increment: none;
counter-reset: none;
cursor: auto;
display: inline;
empty-cells: show;
filter: none;
flex-basis: auto;
flex-direction: row;
flex-grow: 0;
flex-shrink: 1;
flex-wrap: nowrap;
float: none;
font-family: initial;
font-feature-settings: normal;
font-kerning: auto;
font-language-override: normal;
font-size: medium;
font-size-adjust: none;
font-stretch: normal;
font-style: normal;
font-synthesis: weight style;
font-variant: normal;
font-variant-alternates: normal;
font-variant-caps: normal;
font-variant-east-asian: normal;
font-variant-ligatures: normal;
font-variant-numeric: normal;
font-variant-position: normal;
font-weight: 400;
grid-auto-columns: auto;
grid-auto-flow: row;
grid-auto-rows: auto;
grid-column-end: auto;
grid-column-gap: 0;
grid-column-start: auto;
grid-row-end: auto;
grid-row-gap: 0;
grid-row-start: auto;
grid-template-areas: none;
grid-template-columns: none;
grid-template-rows: none;
height: auto;
hyphens: manual;
image-orientation: 0deg;
image-rendering: auto;
image-resolution: 1dppx;
ime-mode: auto;
inline-size: auto;
isolation: auto;
justify-content: flexStart;
left: auto;
letter-spacing: normal;
line-break: auto;
line-height: normal;
list-style-image: none;
list-style-position: outside;
list-style-type: disc;
margin-block-end: 0;
margin-block-start: 0;
margin-bottom: 0;
margin-inline-end: 0;
margin-inline-start: 0;
margin-left: 0;
margin-right: 0;
margin-top: 0;
mask-clip: borderBox;
mask-composite: add;
mask-image: none;
mask-mode: matchSource;
mask-origin: borderBox;
mask-position: 0 0;
mask-repeat: repeat;
mask-size: auto;
mask-type: luminance;
max-height: none;
max-width: none;
min-block-size: 0;
min-height: 0;
min-inline-size: 0;
min-width: 0;
mix-blend-mode: normal;
object-fit: fill;
object-position: 50% 50%;
offset-block-end: auto;
offset-block-start: auto;
offset-inline-end: auto;
offset-inline-start: auto;
opacity: 1;
order: 0;
orphans: 2;
outline-color: initial;
outline-offset: 0;
outline-style: none;
outline-width: medium;
overflow: visible;
overflow-wrap: normal;
overflow-x: visible;
overflow-y: visible;
padding-block-end: 0;
padding-block-start: 0;
padding-bottom: 0;
padding-inline-end: 0;
padding-inline-start: 0;
padding-left: 0;
padding-right: 0;
padding-top: 0;
page-break-after: auto;
page-break-before: auto;
page-break-inside: auto;
perspective: none;
perspective-origin: 50% 50%;
pointer-events: auto;
position: static;
quotes: initial;
resize: none;
right: auto;
ruby-align: spaceAround;
ruby-merge: separate;
ruby-position: over;
scroll-behavior: auto;
scroll-snap-coordinate: none;
scroll-snap-destination: 0 0;
scroll-snap-points-x: none;
scroll-snap-points-y: none;
scroll-snap-type: none;
shape-image-threshold: 0;
shape-margin: 0;
shape-outside: none;
tab-size: 8;
table-layout: auto;
text-align: initial;
text-align-last: auto;
text-combine-upright: none;
text-decoration-color: currentcolor;
text-decoration-line: none;
text-decoration-style: solid;
text-emphasis-color: currentcolor;
text-emphasis-position: over right;
text-emphasis-style: none;
text-indent: 0;
text-justify: auto;
text-orientation: mixed;
text-overflow: clip;
text-rendering: auto;
text-shadow: none;
text-transform: none;
text-underline-position: auto;
top: auto;
touch-action: auto;
transform: none;
transform-box: borderBox;
transform-origin: 50% 50%0;
transform-style: flat;
transition-delay: 0s;
transition-duration: 0s;
transition-property: all;
transition-timing-function: ease;
vertical-align: baseline;
visibility: visible;
white-space: normal;
widows: 2;
width: auto;
will-change: auto;
word-break: normal;
word-spacing: normal;
word-wrap: normal;
writing-mode: horizontalTb;
z-index: auto;
-webkit-appearance: none;
-moz-appearance: none;
-ms-appearance: none;
appearance: none;
margin: 0;
}
.LiveAreaSection {
width: 100%;
}
.LiveAreaSection .login-option-buybox {
display: block;
width: 100%;
font-size: 17px;
line-height: 30px;
color: #222;
padding-top: 30px;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-access-options {
display: block;
font-weight: 700;
font-size: 17px;
line-height: 30px;
color: #222;
font-family: Harding, Palatino, serif;
}
.LiveAreaSection .additional-login > li:not(:first-child)::before {
transform: translateY(-50%);
content: “”;
height: 1rem;
position: absolute;
top: 50%;
left: 0;
border-left: 2px solid #999;
}
.LiveAreaSection .additional-login > li:not(:first-child) {
padding-left: 10px;
}
.LiveAreaSection .additional-login > li {
display: inline-block;
position: relative;
vertical-align: middle;
padding-right: 10px;
}
.BuyBoxSection {
display: flex;
flex-wrap: wrap;
flex: 1;
flex-direction: row-reverse;
margin: -30px -15px 0;
}
.BuyBoxSection .box-inner {
width: 100%;
height: 100%;
padding: 30px 5px;
display: flex;
flex-direction: column;
justify-content: space-between;
}
.BuyBoxSection p {
margin: 0;
}
.BuyBoxSection .readcube-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 1;
flex-basis: 255px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 300px;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .subscribe-buybox-nature-plus {
background-color: #f3f3f3;
flex-shrink: 1;
flex-grow: 4;
flex-basis: 100%;
background-clip: content-box;
padding: 0 15px;
margin-top: 30px;
}
.BuyBoxSection .title-readcube,
.BuyBoxSection .title-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .title-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 24px;
line-height: 32px;
color: #222;
text-align: center;
font-family: Harding, Palatino, serif;
}
.BuyBoxSection .asia-link,
.Link-328123652,
.Link-2926870917,
.Link-2291679238,
.Link-595459207 {
color: #069;
cursor: pointer;
text-decoration: none;
font-size: 1.05em;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 1.05em6;
}
.BuyBoxSection .access-readcube {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection ul {
margin: 0;
}
.BuyBoxSection .link-usp {
display: list-item;
margin: 0;
margin-left: 20px;
padding-top: 6px;
list-style-position: inside;
}
.BuyBoxSection .link-usp span {
font-size: 14px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-asia-buybox {
display: block;
margin: 0;
margin-right: 5%;
margin-left: 5%;
font-size: 14px;
color: #222;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .access-buybox {
display: block;
margin: 0;
margin-right: 10%;
margin-left: 10%;
font-size: 14px;
color: #222;
opacity: 0.8px;
padding-top: 10px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .price-buybox {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
padding-top: 30px;
text-align: center;
}
.BuyBoxSection .price-buybox-to {
display: block;
font-size: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
}
.BuyBoxSection .price-info-text {
font-size: 16px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-value {
font-size: 30px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-per-period {
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .price-from {
font-size: 14px;
padding-right: 10px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 20px;
}
.BuyBoxSection .issue-buybox {
display: block;
font-size: 13px;
text-align: center;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 19px;
}
.BuyBoxSection .no-price-buybox {
display: block;
font-size: 13px;
line-height: 18px;
text-align: center;
padding-right: 10%;
padding-left: 10%;
padding-bottom: 20px;
padding-top: 30px;
color: #222;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
}
.BuyBoxSection .vat-buybox {
display: block;
margin-top: 5px;
margin-right: 20%;
margin-left: 20%;
font-size: 11px;
color: #222;
padding-top: 10px;
padding-bottom: 15px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: 17px;
}
.BuyBoxSection .tax-buybox {
display: block;
width: 100%;
color: #222;
padding: 20px 16px;
text-align: center;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
line-height: NaNpx;
}
.BuyBoxSection .button-container {
display: flex;
padding-right: 20px;
padding-left: 20px;
justify-content: center;
}
.BuyBoxSection .button-container > * {
flex: 1px;
}
.BuyBoxSection .button-container > a:hover,
.Button-505204839:hover,
.Button-1078489254:hover,
.Button-2737859108:hover {
text-decoration: none;
}
.BuyBoxSection .btn-secondary {
background: #fff;
}
.BuyBoxSection .button-asia {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
margin-top: 75px;
}
.BuyBoxSection .button-label-asia,
.ButtonLabel-3869432492,
.ButtonLabel-3296148077,
.ButtonLabel-1636778223 {
display: block;
color: #fff;
font-size: 17px;
line-height: 20px;
font-family: -apple-system, BlinkMacSystemFont, “Segoe UI”, Roboto,
Oxygen-Sans, Ubuntu, Cantarell, “Helvetica Neue”, sans-serif;
text-align: center;
text-decoration: none;
cursor: pointer;
}
.Button-505204839,
.Button-1078489254,
.Button-2737859108 {
background: #069;
border: 1px solid #069;
border-radius: 0;
cursor: pointer;
display: block;
padding: 9px;
outline: 0;
text-align: center;
text-decoration: none;
min-width: 80px;
max-width: 320px;
margin-top: 20px;
}
.Button-505204839 .btn-secondary-label,
.Button-1078489254 .btn-secondary-label,
.Button-2737859108 .btn-secondary-label {
color: #069;
}
.uList-2102244549 {
list-style: none;
padding: 0;
margin: 0;
}
/* style specs end */

Fig. 1: Summary of evidence from observational and experimental studies relating dietary patterns to cognitive outcomes.
Fig. 2: Comparison of two different approaches to diet intervention trials for dementia prevention.

References

  1. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 20, 3708–3821 (2024).

  2. Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article 

    Google Scholar 

  3. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  4. Lichtenstein A. H. et al. 2021 dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association. Circulation 144, e472–e487 (2021).

    Google Scholar 

  5. Yannakoulia, M. & Scarmeas, N. Diets. N. Engl. J. Med. 390, 2098–2106 (2024).

    Article 
    PubMed 

    Google Scholar 

  6. Sabia, S. et al. Association of ideal cardiovascular health at age 50 with incidence of dementia: 25 year follow-up of Whitehall II cohort study. BMJ 366, l4414 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  7. Yassine, H. N. et al. Nutrition state of science and dementia prevention: recommendations of the Nutrition for Dementia Prevention Working Group. Lancet Healthy Longev. 3, e501–e512 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  8. Scarmeas, N., Anastasiou, C. A. & Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 17, 1006–1015 (2018).

    Article 
    PubMed 

    Google Scholar 

  9. Belder, C. R. S., Schott, J. M. & Fox, N. C. Preparing for disease-modifying therapies in Alzheimer’s disease. Lancet Neurol. 22, 782–783 (2023).

    Article 
    PubMed 

    Google Scholar 

  10. Tan, Z. S. The dawn of disease modification for Alzheimer’s disease: hope and peril. J. Am. Geriatr. Soc. 70, 1661–1663 (2022).

    Article 
    PubMed 

    Google Scholar 

  11. Willett, W. C. et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am. J. Clin. Nutr. 61, 1402S–1406S (1995).

    Article 
    PubMed 

    Google Scholar 

  12. Martínez-Lapiscina, E. H., Clavero, P. & Toledo, E. et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 84, 1318–1325 (2013).

    Article 
    PubMed 

    Google Scholar 

  13. Valls-Pedret, C. et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern. Med. 175, 1094–1103 (2015).

    Article 
    PubMed 

    Google Scholar 

  14. Knight, A. et al. The Mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: the MedLey study. Nutrients 8, 579 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  15. Fu, J., Tan, L. J., Lee, J. E. & Shin, S. Association between the Mediterranean diet and cognitive health among healthy adults: a systematic review and meta-analysis. Front. Nutr. 9, 946361 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  16. Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    Article 
    PubMed 

    Google Scholar 

  17. Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 344, 3–10 (2001).

    Article 
    PubMed 

    Google Scholar 

  18. Wengreen, H. et al. Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am. J. Clin. Nutr. 98, 1263–1271 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  19. Berendsen, A. A. M. et al. The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. J. Am. Med. Dir. Assoc. 18, 427–432 (2017).

    Article 
    PubMed 

    Google Scholar 

  20. Haring, B. et al. No association between dietary patterns and risk for cognitive decline in older women with 9-year follow-up: data from the women’s health initiative memory study. J. Acad. Nutr. Diet. 116, 921–930.e1 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  21. Shakersain, B. et al. The Nordic prudent diet reduces risk of cognitive decline in the Swedish older adults: a population-based cohort study. Nutrients 10, 229 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Nishi, S. K. et al. Mediterranean, DASH, and MIND dietary patterns and cognitive function: the 2-year longitudinal changes in an older Spanish cohort. Front. Aging Neurosci. 13, 782067 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Daniel, G. D. et al. DASH diet adherence and cognitive function: multi-ethnic study of atherosclerosis. Clin. Nutr. ESPEN 46, 223–231 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  24. Blumenthal, J. A. et al. Lifestyle and neurocognition in older adults with cognitive impairments: a randomized trial. Neurology 92, e212–e223 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  25. Morris, M. C. et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 11, 1015–1022 (2015).

    Article 
    PubMed 

    Google Scholar 

  26. Hosking, D. E., Eramudugolla, R., Cherbuin, N. & Anstey, K. J. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement. 15, 581–589 (2019).

    Article 
    PubMed 

    Google Scholar 

  27. Huang, L. et al. Mediterranean-dietary approaches to stop hypertension intervention for neurodegenerative delay (MIND) diet and cognitive function and its decline: a prospective study and meta-analysis of cohort studies. Am. J. Clin. Nutr. 118, 174–182 (2023).

    Article 
    PubMed 

    Google Scholar 

  28. Thomas, A. et al. Diet, pace of biological aging, and risk of dementia in the Framingham Heart Study. Ann. Neurol. 95, 1069–1079 (2024).

    Article 
    PubMed 

    Google Scholar 

  29. Thomas, A. et al. Association of a MIND diet with brain structure and dementia in a French population. J. Prev. Alzheimers Dis. 9, 655–664 (2022).

    PubMed 

    Google Scholar 

  30. Sawyer, R. P., Blair, J., Shatz, R., Manly, J. J. & Judd, S. E. Association of adherence to a MIND-style diet with the risk of cognitive impairment and decline in the REGARDS cohort. Neurology 103, e209817 (2024).

    Article 
    PubMed 

    Google Scholar 

  31. Berendsen, A. M. et al. Association of long-term adherence to the MIND diet with cognitive function and cognitive decline in American women. J. Nutr. Health Aging 22, 222–229 (2018).

    Article 
    PubMed 

    Google Scholar 

  32. Melo van Lent, D. et al. Mind diet adherence and cognitive performance in the Framingham Heart Study. J. Alzheimers Dis. 82, 827–839 (2021).

    Article 
    PubMed 

    Google Scholar 

  33. Boumenna, T. et al. MIND diet and cognitive function in Puerto Rican older adults. J. Gerontol. A Biol. Sci. Med. Sci. 77, 605–613 (2022).

    Article 
    PubMed 

    Google Scholar 

  34. Barnes, L. L. et al. Trial of the MIND diet for prevention of cognitive decline in older persons. N. Engl. J. Med. 389, 602–611 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Zhang, X. et al. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am. J. Clin. Nutr. 114, 429–440 (2021).

    Article 
    PubMed 

    Google Scholar 

  36. Hayden, K. M. et al. The association between an inflammatory diet and global cognitive function and incident dementia in older women: the Women’s Health Initiative Memory Study. Alzheimers Dement. 13, 1187–1196 (2017).

    Article 
    PubMed 

    Google Scholar 

  37. Shi, Y. et al. Association of pro-inflammatory diet with increased risk of all-cause dementia and Alzheimer’s dementia: a prospective study of 166,377 UK Biobank participants. BMC Med. 21, 266 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  38. Ozawa, M., Shipley, M., Kivimaki, M., Singh-Manoux, A. & Brunner, E. J. Dietary pattern, inflammation and cognitive decline: the Whitehall II prospective cohort study. Clin. Nutr. 36, 506–512 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  39. Charisis, S. et al. Diet inflammatory index and dementia incidence: a population-based study. Neurology 97, e2381–e2391 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  40. Melo van Lent, D. et al. Association between dietary inflammatory index score and incident dementia: results from the Framingham Heart Study Offspring cohort. Preprint at medRxiv https://doi.org/10.1101/2023.08.21.23294374 (2023).

  41. Shivappa, N., Steck, S. E., Hurley, T. G., Hussey, J. R. & Hébert, J. R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 17, 1689–1696 (2014).

    Article 
    PubMed 

    Google Scholar 

  42. Tsai, J. H. et al. Taiwanese vegetarians are associated with lower dementia risk: a prospective cohort study. Nutrients 14, 588 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  43. Liu, X. et al. A healthy plant-based diet was associated with slower cognitive decline in African American older adults: a biracial community-based cohort. Am. J. Clin. Nutr. 116, 875–886 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  44. de Crom, T. O. E., Steur, M., Ikram, M. K., Ikram, M. A. & Voortman, T. Plant-based dietary patterns and the risk of dementia: a population-based study. Age Ageing 52, afad178 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  45. Kanerva, N., Kaartinen, N. E., Schwab, U., Lahti-Koski, M. & Männistö, S. Adherence to the Baltic Sea diet consumed in the Nordic countries is associated with lower abdominal obesity. Br. J. Nutr. 109, 520–528 (2013).

    Article 
    PubMed 

    Google Scholar 

  46. Ballarini, T. et al. Mediterranean diet, Alzheimer disease biomarkers, and brain atrophy in old age. Neurology 96, e2920 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  47. Rainey-Smith, S. R. et al. Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: data from the Australian imaging, biomarkers and lifestyle study of ageing. Transl. Psychiatry 8, 238 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Berti, V. et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 90, e1789–e1798 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  49. Hill, E., Goodwill, A. M., Gorelik, A. & Szoeke, C. Diet and biomarkers of Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol. Aging 76, 45–52 (2019).

    Article 
    PubMed 

    Google Scholar 

  50. Kaplan, A. et al. The effect of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on age-related brain atrophy: the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT PLUS). Am. J. Clin. Nutr. 115, 1270–1281 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  51. Melo Van Lent, D. et al. Higher dietary inflammatory index scores are associated with brain MRI markers of brain aging: results from the Framingham Heart Study Offspring cohort. Alzheimers Dement. 19, 621–631 (2023).

    Article 
    PubMed 

    Google Scholar 

  52. Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 124, 779–798 (2019).

    Article 
    PubMed 

    Google Scholar 

  53. Gottesman, R. F. et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 74, 1246–1254 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. Luchsinger, J. A. et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545–551 (2005).

    Article 
    PubMed 

    Google Scholar 

  55. Gardener, H. et al. Mediterranean diet and white matter hyperintensity volume in the Northern Manhattan Study. Arch. Neurol. 69, 251–256 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  56. Scarmeas, N. et al. Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Ann. Neurol. 69, 257–268 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  57. Weaver, N. A. et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol. 20, 448–459 (2021).

    Article 
    PubMed 

    Google Scholar 

  58. Filley, C. M. & Fields, R. D. White matter and cognition: making the connection. J. Neurophysiol. 116, 2093–2104 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  59. Scheffer, S., Hermkens, D. M. A., van der Weerd, L., de Vries, H. E. & Daemen, M. J. A. P. Vascular hypothesis of Alzheimer disease. Arterioscler. Thromb. Vasc. Biol. 41, 1265–1283 (2021).

    Article 
    PubMed 

    Google Scholar 

  60. Larsson, S. C., Wallin, A. & Wolk, A. Dietary approaches to stop hypertension diet and incidence of stroke. Stroke 47, 986–990 (2016).

    Article 
    PubMed 

    Google Scholar 

  61. Chen, H. et al. Associations of the Mediterranean-DASH intervention for neurodegenerative delay diet with brain structural markers and their changes. Alzheimers Dement. 20, 1190–1200 (2024).

    Article 
    PubMed 

    Google Scholar 

  62. Dede, D. S. et al. Assessment of endothelial function in Alzheimer’s disease: is Alzheimer’s disease a vascular disease? J. Am. Geriatr. Soc. 55, 1613–1617 (2007).

    Article 
    PubMed 

    Google Scholar 

  63. Khalil, Z., LoGiudice, D., Khodr, B., Maruff, P. & Masters, C. Impaired peripheral endothelial microvascular responsiveness in Alzheimer’s disease. J. Alzheimers Dis. 11, 25–32 (2007).

    Article 
    PubMed 

    Google Scholar 

  64. Borroni, B. et al. Peripheral blood abnormalities in Alzheimer disease: evidence for early endothelial dysfunction. Alzheimer Dis. Assoc. Disord. 16, 150–155 (2002).

    Article 
    PubMed 

    Google Scholar 

  65. Zuliani, G. et al. Markers of endothelial dysfunction in older subjects with late onset Alzheimer’s disease or vascular dementia. J. Neurol. Sci. 272, 164–170 (2008).

    Article 
    PubMed 

    Google Scholar 

  66. Kelleher, R. J. & Soiza, R. L. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: is Alzheimer’s a vascular disorder? Am. J. Cardiovasc. Dis. 3, 197–226 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  67. Torres-Peña, J. D., Rangel-Zuñiga, O. A., Alcala-Diaz, J. F., Lopez-Miranda, J. & Delgado-Lista, J. Mediterranean diet and endothelial function: a review of its effects at different vascular bed levels. Nutrients 12, 2212 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  68. Yubero-Serrano, E. M. et al. Mediterranean diet and endothelial function in patients with coronary heart disease: an analysis of the CORDIOPREV randomized controlled trial. PLoS Med. 17, e1003282 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  69. Yassine, H. N. et al. Nutritional metabolism and cerebral bioenergetics in Alzheimer’s disease and related dementias. Alzheimers Dement. 19, 1041–1066 (2022).

    Article 
    PubMed 

    Google Scholar 

  70. Kalaria, R. N. & Harik, S. I. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease. J. Neurochem. 53, 1083–1088 (1989).

    Article 
    PubMed 

    Google Scholar 

  71. Simpson, I. A. & Davies, P. Reduced glucose transporter concentrations in brains of patients with Alzheimer’s disease. Ann. Neurol. 36, 800–801 (1994).

    Article 
    PubMed 

    Google Scholar 

  72. Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C. X. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J. Neurochem. 111, 242–249 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  73. Kellar, D. & Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19, 758–766 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Blass, J. P., Sheu, K. F., Piacentini, S. & Sorbi, S. Inherent abnormalities in oxidative metabolism in Alzheimer’s disease: interaction with vascular abnormalities. Ann. N. Y. Acad. Sci. 826, 382–385 (1997).

    Article 
    PubMed 

    Google Scholar 

  75. Sharma, C., Kim, S., Nam, Y., Jung, U. J. & Kim, S. R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int J. Mol. Sci. 22, 4850 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  76. Sultana, R., Perluigi, M. & Butterfield, D. A. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid. Redox Signal. 8, 2021–2037 (2006).

    Article 
    PubMed 

    Google Scholar 

  77. Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging 25, 5–18 (2004).

    Article 
    PubMed 

    Google Scholar 

  78. Nasrabady, S. E., Rizvi, B., Goldman, J. E. & Brickman, A. M. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol. Commun. 6, 22 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  79. Acosta, C., Anderson, H. D. & Anderson, C. M. Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 95, 2430–2447 (2017).

    Article 
    PubMed 

    Google Scholar 

  80. Baik, S. H. et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 30, 493–507.e6 (2019).

    Article 
    PubMed 

    Google Scholar 

  81. Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648.e6 (2022).

    Article 
    PubMed 

    Google Scholar 

  82. Bowman, G. L. et al. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68, 1809–1814 (2007).

    Article 
    PubMed 

    Google Scholar 

  83. Matthews, D. C. et al. Physical activity, Mediterranean diet and biomarkers-assessed risk of Alzheimer’s: a multi-modality brain imaging study. Adv. Mol. Imaging 4, 43–57 (2014).

    Article 

    Google Scholar 

  84. Sureda, A. et al. Mediterranean diets supplemented with virgin olive oil and nuts enhance plasmatic antioxidant capabilities and decrease xanthine oxidase activity in people with metabolic syndrome: the PREDIMED study. Mol. Nutr. Food Res. 60, 2654–2664 (2016).

    Article 
    PubMed 

    Google Scholar 

  85. Sofi, F. et al. Low-calorie vegetarian versus Mediterranean diets for reducing body weight and improving cardiovascular risk profile: CARDIVEG Study (Cardiovascular Prevention With Vegetarian Diet). Circulation 137, 1103–1113 (2018).

  86. Davis, C. R., Bryan, J., Hodgson, J. M., Woodman, R. & Murphy, K. J. A Mediterranean diet reduces F(2)-isoprostanes and triglycerides among older Australian men and women after 6 months. J. Nutr. 147, 1348–1355 (2017).

    Article 
    PubMed 

    Google Scholar 

  87. Choi, S. H. & Choi-Kwon, S. The effects of the DASH diet education program with omega-3 fatty acid supplementation on metabolic syndrome parameters in elderly women with abdominal obesity. Nutr. Res. Pract. 9, 150–157 (2015).

    Article 
    PubMed 

    Google Scholar 

  88. Razavi Zade, M. et al. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: a randomized clinical trial. Liver Int. 36, 563–571 (2016).

    Article 
    PubMed 

    Google Scholar 

  89. Forman, H. J., Zhang, H. & Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12 (2009).

    Article 

    Google Scholar 

  90. Franceschi, C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article 
    PubMed 

    Google Scholar 

  91. Tangestani Fard, M. & Stough, C. A review and hypothesized model of the mechanisms that underpin the relationship between inflammation and cognition in the elderly. Front. Aging Neurosci. 11, 56 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  92. Giunta, B. et al. Inflammaging as a prodrome to Alzheimer’s disease. J. Neuroinflammation 5, 51 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  93. Casas, R. et al. Long-term immunomodulatory effects of a Mediterranean diet in adults at high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. J. Nutr. 146, 1684–1693 (2016).

    Article 
    PubMed 

    Google Scholar 

  94. Esposito, K. et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292, 1440–1446 (2004).

    Article 
    PubMed 

    Google Scholar 

  95. Soltani, S., Chitsazi, M. J. & Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: a systematic review and meta-analysis of randomized trials. Clin. Nutr. 37, 542–550 (2018).

    Article 
    PubMed 

    Google Scholar 

  96. Duggan, M. R. et al. Plasma proteins related to inflammatory diet predict future cognitive impairment. Mol. Psychiatry 28, 1599–1609 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  97. Liu, X., Jiao, B. & Shen, L. The epigenetics of Alzheimer’s disease: factors and therapeutic implications. Front. Genet. 9, 579 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  98. Nicolia, V., Lucarelli, M. & Fuso, A. Environment, epigenetics and neurodegeneration: focus on nutrition in Alzheimer’s disease. Exp. Gerontol. 68, 8–12 (2015).

    Article 
    PubMed 

    Google Scholar 

  99. Athanasopoulos, D., Karagiannis, G. & Tsolaki, M. Recent findings in Alzheimer disease and nutrition focusing on epigenetics. Adv. Nutr. 7, 917–927 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  100. Gensous, N. et al. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: a pilot study from the NU-AGE project. Geroscience 42, 687–701 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  101. Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 67–686 (2024).

    Article 

    Google Scholar 

  102. Schneider, E., O’Riordan, K. J., Clarke, G. & Cryan, J. F. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat. Metab. 6, 1454–1478 (2024).

    Article 
    PubMed 

    Google Scholar 

  103. Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020).

    Article 
    PubMed 

    Google Scholar 

  104. Choo, J. M. et al. Interactions between Mediterranean diet supplemented with dairy foods and the gut microbiota influence cardiovascular health in an Australian population. Nutrients 15, 3645 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  105. van Soest, A. P. M. et al. Associations between pro- and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in Dutch healthy older adults: the NU-AGE study. Nutrients 12, 3471 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  106. Pelletier, A. et al. Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimers Dement. 11, 1023–1031 (2015).

    Article 
    PubMed 

    Google Scholar 

  107. Ruiz-Rizzo, A. L. et al. Fornix fractional anisotropy mediates the association between Mediterranean diet adherence and memory four years later in older adults without dementia. Neurobiol. Aging 136, 99–110 (2024).

    Article 
    PubMed 

    Google Scholar 

  108. Drouka, A., Mamalaki, E., Karavasilis, E., Scarmeas, N. & Yannakoulia, M. Dietary and nutrient patterns and brain MRI biomarkers in dementia-free adults. Nutrients 14, 2345 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  109. Xue, B. et al. Brain-derived neurotrophic factor: a connecting link between nutrition, lifestyle, and Alzheimer’s disease. Front. Neurosci. 16, 925991 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  110. Martínez-Lapiscina, E. H. et al. Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: the PREDIMED-NAVARRA trial. Genes Nutr. 9, 393 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  111. Martínez-González, M. et al. Cohort profile: design and methods of the PREDIMED study. Int. J. Epidemiol. 41, 377–385 (2012).

    Article 
    PubMed 

    Google Scholar 

  112. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article 
    PubMed 

    Google Scholar 

  113. Carlisle, J. B. Data fabrication and other reasons for non-random sampling in 5087 randomised, controlled trials in anaesthetic and general medical journals. Anaesthesia 72, 944–952 (2017).

    Article 
    PubMed 

    Google Scholar 

  114. Scarmeas, N. Mediterranean food for thought? J. Neurol. Neurosurg. Psychiatry 84, 1297 (2013).

  115. Mosconi, L. et al. Increased fibrillar amyloid-β burden in normal individuals with a family history of late-onset Alzheimer’s. Proc. Natl Acad. Sci. USA 107, 5949–5954 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  116. Honea, R. A., Vidoni, E. D., Swerdlow, R. H. & Burns, J. M. Maternal family history is associated with Alzheimer’s disease biomarkers. J. Alzheimers Dis. 31, 659–668 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  117. Shannon, O. M. et al. Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: findings from the UK Biobank prospective cohort study. BMC Med. 21, 81 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  118. Vu, T. H. T. et al. Adherence to MIND diet, genetic susceptibility, and incident dementia in three US cohorts. Nutrients 14, 2759 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  119. Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11, 1006–1012 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  120. Samieri, C. et al. Personalized nutrition for dementia prevention. Alzheimers Dement. 18, 1424–1437 (2022).

    Article 
    PubMed 

    Google Scholar 

  121. Chinna-Meyyappan, A. et al. Effects of the ketogenic diet on cognition: a systematic review. Nutr. Neurosci. 26, 1258–1278 (2023).

    Article 
    PubMed 

    Google Scholar 

  122. Neth, B. J. et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: a pilot study. Neurobiol. Aging 86, 54–63 (2020).

    Article 
    PubMed 

    Google Scholar 

  123. Gomes Gonçalves, N. et al. Association between consumption of ultraprocessed foods and cognitive decline. JAMA Neurol. 80, 142–150 (2023).

    Article 
    PubMed 

    Google Scholar 

  124. Li, H. et al. Association of ultraprocessed food consumption with risk of dementia: a prospective cohort study. Neurology 99, e1056–e1066 (2022).

    Article 
    PubMed 

    Google Scholar 

  125. Cabo, R. D. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).

    Article 
    PubMed 

    Google Scholar 

  126. Gudden, J., Arias Vasquez, A. & Bloemendaal, M. The effects of intermittent fasting on brain and cognitive function. Nutrients 13, 3166 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  127. Schwedhelm, C. et al. Using food network analysis to understand meal patterns in pregnant women with high and low diet quality. Int. J. Behav. Nutr. Phys. Act. 18, 101 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  128. Samieri, C. et al. Using network science tools to identify novel diet patterns in prodromal dementia. Neurology 94, e2014–e2025 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  129. Meier, I. B. et al. Using a Digital Neuro Signature to measure longitudinal individual-level change in Alzheimer’s disease: the Altoida large cohort study. npj Digit. Med. 4, 101 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  130. Mirmiran, P., Bahadoran, Z. & Gaeini, Z. Common limitations and challenges of dietary clinical trials for translation into clinical practices. Int. J. Endocrinol. Metab. 19, e108170 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  131. Gilmore-Bykovskyi, A. L. et al. Recruitment and retention of underrepresented populations in Alzheimer’s disease research: a systematic review. Alzheimers Dement. 5, 751–770 (2019).

    Google Scholar 

  132. Barnes, L. L. et al. Mixed pathology is more likely in black than white decedents with Alzheimer dementia. Neurology 85, 528–534 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  133. Graff-Radford, N. R., Besser, L. M., Crook, J. E., Kukull, W. A. & Dickson, D. W. Neuropathologic differences by race from the National Alzheimer’s Coordinating Center. Alzheimers Dement. 12, 669–677 (2016).

    Article 
    PubMed 

    Google Scholar 

  134. Indorewalla, K. K., O’Connor, M. K., Budson, A. E., Guess DiTerlizzi, C. & Jackson, J. Modifiable barriers for recruitment and retention of older adults participants from underrepresented minorities in Alzheimer’s disease research. J. Alzheimers Dis. 80, 927–940 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  135. Tucker, K. L., Bianchi, L. A., Maras, J. & Bermudez, O. I. Adaptation of a food frequency questionnaire to assess diets of Puerto Rican and non-Hispanic adults. Am. J. Epidemiol. 148, 507–518 (1998).

    Article 
    PubMed 

    Google Scholar 

  136. Pannen, S. T. et al. Development of a multilingual web-based food frequency questionnaire for adults in Switzerland. Nutrients 15, 4359 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  137. Eldridge, A. L. et al. Evaluation of new technology-based tools for dietary intake assessment-an ILSI Europe dietary intake and exposure task force evaluation. Nutrients 11, 55 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  138. Mc Cord, K. A. et al. Routinely collected data for randomized trials: promises, barriers, and implications. Trials 19, 29 (2018).

    Article 

    Google Scholar 

  139. Richard, E. et al. Healthy ageing through internet counselling in the elderly (HATICE): a multinational, randomised controlled trial. Lancet Digit. Health 1, e424–e434 (2019).

    Article 
    PubMed 

    Google Scholar 

  140. Richard, E. et al. Methodological challenges in designing dementia prevention trials — the European Dementia Prevention Initiative (EDPI). J. Neurol. Sci. 322, 64–70 (2012).

    Article 
    PubMed 

    Google Scholar 

  141. Whelan, R., Barbey, F. M., Cominetti, M. R., Gillan, C. M. & Rosická, A. M. Developments in scalable strategies for detecting early markers of cognitive decline. Transl. Psychiatry 12, 473 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to
Nikolaos Scarmeas.

Ethics declarations

Competing interests

N.S. has received grants from European Union Horizon Projects, the Hellenic Foundation for Research & Innovation, and Novo Nordisk during the conduct of the study, all outside the submitted work. S.C. and M.Y. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks John Cryan, Cécilia Samieri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charisis, S., Yannakoulia, M. & Scarmeas, N. Diets to promote healthy brain ageing.
Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-01036-9

Download citation

  • Accepted: 25 October 2024

  • Published: 21 November 2024

  • DOI: https://doi.org/10.1038/s41582-024-01036-9


Leave a Reply

Your email address will not be published. Required fields are marked *